
A Load-Balanced Call Admission Controller for

IMS Cloud Computing

Ahmadreza Montazerolghaem
1
, Mohammad Hossein Yaghmaee

1, 2
, Alberto Leon-Garcia

2
,

Mahmoud Naghibzadeh
1
, Farzad Tashtarian

3

1Department of Computer Engineering, Ferdowsi University of Mashhad, Mashhad, Iran
2Department of Electrical and Computer Engineering, University of Toronto, Toronto, Ontario, Canada

3Department of Information Technology, Mashhad Branch, Azad University, Mashhad, Iran

Ahmadreza.montazerolghaem@stu.um.ac.ir, hyaghmae@um.ac.ir, alberto.leongarcia@utoronto.ca, naghibzadeh@um.ac.ir,

f.tashtarian@mshdiau.ac.ir

Abstract— Network functions virtualization provides

opportunities to design, deploy, and manage networking

services. It utilizes Cloud computing virtualization services

that run on high-volume servers, switches and storage

hardware to virtualize network functions. Virtualization

techniques can be used in IP Multimedia Subsystem (IMS)

cloud computing to develop different networking functions

(e.g. load balancing and call admission control). IMS network

signaling happens through Session Initiation Protocol (SIP).

An open issue is the control of overload that occurs when an

SIP server lacks sufficient CPU and memory resources to

process all messages. This paper proposes a virtual load

balanced call admission controller (VLB-CAC) for the cloud-

hosted SIP servers. VLB-CAC determines the optimal “call

admission rates” and “signaling paths” for admitted calls

along with the optimal allocation of CPU and memory

resources of the SIP servers. This optimal solution is derived

through a new linear programming model. This model

requires some critical information of SIP servers as input.

Further, VLB-CAC is equipped with an autoscaler to

overcome resource limitations. The proposed scheme is

implemented in SAVI (Smart Applications on Virtual

Infrastructure) which serves as a virtual testbed. An

assessment of the numerical and experimental results

demonstrates the efficiency of the proposed work.

Keywords—SIP servers, Resource allocation, Cloud

computing; Multi-objective optimization; Network function

virtualization; Overload control; Voice over IP (VoIP)

I. INTRODUCTION

IP Multimedia Subsystem (IMS) has been introduced by
3rd Generation Partnership Project (3GPP) standards to
enable real-time communication services such as Voice over
IP (VoIP), video communication, IP-based messaging and
other new innovative multimedia communication services,
on a full IP-based core network over any access technology.

IMS Cloud computing has been introduced to support
high-quality multimedia applications in the cloud
computing. Network Function Virtualization (NFV) and
Cloud computing could be used to improve the scalability
and elasticity of IMS deployments [1]. The work given in [2]
introduces a set of three software architectures for efficient
virtualization of IMS in different operating environments. A
management architecture is used to simplify the deployment
and runtime orchestration of such a virtual service on top of
a Cloud infrastructure.

Call Session Control Function (CSCF) is the main part of
IMS which is used to setup, maintain and release call
sessions. The main protocol used for managing media
sessions in CSCF is Session Initiation Protocol (SIP). SIP is
an application layer signaling protocol for initiating,
modifying, and tearing down multimedia sessions [3]. SIP
uses UDP or TCP packets for different operations such as

device registration and call setup/teardown. Call setup
message or “INVITE” (briefly referred to as Call Request) is
the most important request message, given that its
transaction has a maximum process load on CPU server [4,
5]. Once a session is created, media are exchanged without
passing through the servers. Hence, only the signaling
messages would impose a load on the server. The SIP
overload occurs when SIP server lacks enough resources
such as CPU and memory [8], to process all messages [6, 7].
Considering the increasing application of this protocol, SIP
serves should be equipped with overload control.

Cloud-hosted SIP servers offer flexibility, affordability,
and reliability for communication requirements. Unlike
traditional SIP servers, cloud-hosted SIP servers use the
benefits of Cloud computing and eliminate the expensive
setup and the large capital investment on hardware. Cloud-
hosted SIP servers can use the dynamic resource
provisioning and autoscaling features of the cloud
computing to provide scalability, mobility, and reliability for
the customers. Each SIP server can be implemented in a
Virtual Machine (VM) in the cloud environment. As each
VM has a predefined resource, the total capacity of SIP
servers decreases when an overload situation occurs. This is
because most of its processing resources are being used for
rejecting or processing the messages that would be
ultimately rejected [9]. SIP servers provide reliability by
retransmission of the messages with an unconfirmed
delivery [9] when functioning on unreliable transmission
protocols such as UDP [8]. In this regard, a large set of
retransmission timers are employed [6, 8]. Although this
mechanism is useful in case of unreliable links, under
overload conditions, it imposes high loads on the server and
decreases efficiency [8]. This is because the redundant
retransmissions and manipulation of the mentioned timers
increase CPU and memory occupation and worsen server
overload. On the other hand, the base mechanism of SIP
protocol which lacks the required efficiency for overload
control would be activated [6]. In this case, the server rejects
new call request messages by issuing “503 service
unavailable” message once reaching the maximum capacity
(whose cost is comparable to providing a service). In
addition, for servers configured statefully (as the dominant
configuration), some state information is stored for each
transaction. Having no supervision over the number of
established calls, a server might engage its entire memory
which degrades the performance. Therefore, to obtain
maximum capacity and prevent overload occurrence, it is
necessary to make optimum use of resources and prevent its
waste.

The aim of this paper is to propose a method for optimal
allocation of SIP servers’ resources to the admitted calls. To
this aim, we extend our recent work [10] by utilizing the

benefits of NFV and the cloud computing to propose an
optimized VLB-CAC. VLB-CAC runs on a virtual machine
on the cloud while communicating with all SIP servers.
Meanwhile, it collects statistics about the remaining
resources of SIP servers. VLB-CAC is responsible to find
the optimal call acceptance rate for each SIP server by
solving an optimization problem which prevents overload.
VLB-CAC uses the autoscaling capability of cloud
computing to overcome resource limitations, using the cloud
capacities in resources virtualization. The main contributions
of this work are summarized as follows:

(1) We develop an optimized virtual load balancer and
admission controller for SIP servers by utilizing the
virtualization services in cloud computing;

(2) We prove that the overload control problem for n
servers with limited resource is NP-hard;

(3) We propose a mathematical model which optimizes
resource usage and maximizes throughput;

(4) We propose a novel autoscaling scheme at VM level,
which sufficiently scales the resources, while attempting to
maximize call admission rate;

(5) We implemented the proposed work on a real two-
tier cloud computing [11].

The rest of the paper is organized as follows: in Section
II, we provide an overview of the related works. System
model and problem formulations is given in Section III.
Section IV presents the proposed method. The performance
evaluation, conclusion and future work are given Section VI.

II. RELATED WORK

There are different approaches for improving SIP
performance under overload conditions. These approaches
are classified as below:

- Load balancing: Distribution of new input traffic over
the SIP servers based on their accessible capacity using a
“Load Balancer” [4, 12, and 13] is called load balancing.
This approach reduces the probability of overload. As the
whole signaling traffic of SIP network passes through load
balancer, performance is reduced. As a result, the load
balancer itself is threatened by the risk of overload.
Therefore, its performance needs to be enhanced by the
available techniques.

- Overload control: These methods are divided into local
and distributed methods. In local methods, the overloaded
server has an independent control over its resource usage
without the need for interaction with other network servers.
The criteria for identifying the overload in some of these
methods are queue length and CPU usage level. According
to these criteria, a set of thresholds is defined, exceeding
which makes the server enter overload stage so that it starts
to reject the incoming calls. The main drawback of this
method is that the cost of call rejection cannot be ignored,
and when dealing with heavy overloads, the server must use
its resources for rejecting the excess calls [5]. On the other
hand, depending on whether upstream servers detect
overload or informed via the overloaded downstream
servers, distributed methods are categorized into explicit and
implicit methods [7]. Explicit methods are classified into
rate-based, loss-based, signal-based, window-based, and
on/off control techniques [14]. Within the rate-based
techniques, the downstream server controls the delivery rate
from upstream servers [9, 15]. In the loss-based technique,
downstream server frequently measures its current load and
accordingly requests the upstream servers to reduce their
transmitted load [16]. In window-based methods, unless
there are empty slots in upstream server window, the load is

not transmitted to the downstream server. The main issue of
the later methods is window size adjustment, which can be
achieved using the feedback from the downstream server [3,
6, and 17]. In signal-based methods, the upstream server
reduces its transmission rate when receiving “503 Service
Unavailable” message in order to prevent further
transmission of 503 messages from the downstream server
[18]. Unlike signal-based method which do not employ
“Retry-After” header, a given server can either hold off or
on its received load within the on/off control method by
transmission of Retry-After feedback [19]. As opposed to
explicit methods, the absence of responses or the loss of
packets is used to detect overload in implicit methods.

- Retransmission rate variation: These methods review
retransmission mechanism of SIP by studying servers’ buffer
size [8, 20]. By limiting the dedicated memory of the server,
admitting over-capacity calls can be avoided. This policy
loses efficiency once the call rate rises, as the server
processor is forced to analyze the messages to recognize
their content. Therefore, the server saturates, (typically)
under higher loads.

- Exploiting TCP flow control: These methods exploit
the mechanism of preventing congestion for the purpose of
overload control [21]. The setback of such methods is
scalability and high delay. Further, congestion in TCP occurs
due to limited bandwidth, whereas overload in SIP happens
due to limited processing capacity of servers’ CPU [8].

As mentioned earlier, cloud-hosted SIP servers use the
benefits of cloud computing. Moreover, they eliminate the
expensive setup and large capital investment on hardware.
Therefore, SIP servers can be implemented as VMs in the
cloud. Resource management and call admission control are
important issues in cloud computing. In [22], a distributed
hierarchical framework based on a mixed-integer nonlinear
optimization of resource management across multiple
timescales is proposed. The main goal is to set resource
allocation policies for virtualized cloud environments that
satisfy performance and availability guarantees and
minimize energy costs in very large cloud service centers.
In [23] a centralized hierarchical cloud-based multimedia
system (CMS) has been considered. The CMS consists of a
resource manager, cluster heads, and server clusters in which
each server cluster only handles a specific type of
multimedia task, and each client requests a different type of
multimedia service at a different time. The problem has been
modeled as an integer linear programming and has been
solved by an efficient genetic algorithm. The authors in [24]
formulate and discuss load balancing problem addressing
VoIP in the cloud computing federation and propose a new
distributed adaptive power aware load balancing algorithm
for VoIP cloud.

Based on the above-mentioned points, the disadvantages
of the present overload control approaches are: First,
reliance merely on the local call rejection reduces
throughput. Second, for the majority of explicit feedback-
based methods, the continuous revision of the status and
feedback calculation imposes complexity and overhead.
Third is the delay in feedback arrival to upstream, which
results in instability. Nonetheless, the precision of overload
detection is higher compared to implicit methods. Therefore,
overload detection, feedback generation, and running the
overload control algorithm incurs CPU and memory usage
costs and affects server throughput. To the best of our
knowledge, autoscaling capability of the cloud computing
has not been employed to scale up or down the VMs in case
of sudden changes in offered load in IMS cloud computing.

III. SYSTEM MODEL AND PROBLEM FORMULATION

The architecture of the SIP protocol consists of User
Agent and SIP Server. A User Agent Client creates a SIP
request and sends it to a User Agent Server. The request
traverses through one or more SIP servers in a SIP network.
The main purpose of a SIP server is to route each request to
its destination [9]. Since the requests are routed hub by hub,
and generally there are several servers from source to
destination (which implies various path between the nodes),
factoring in the routing request from the SIPs would be
beneficial to lowering resource for servers and avoiding
loops. The response traces back the path that the request has
been taken. An “INVITE” request together with a “BYE”
request initialize and terminate the call, respectively. As SIP
is call-oriented, it can only reject the “INVITE” requests by
the SIP server if unwilling (or unable) to forward the
requests. The user is connected to the server located closest
to it. The first server to which the call arrives, decides about
the admission of the call. Moreover, the middle servers route
the call to the last server (or the target server).

Consider a two-tier cloud consisting of one core that
represents a cloud with large number of computing
resources, typically a large data center and some smart edges
that represent a cloud with a limited set of computing
resources, typically a small data center. The smart edges are
geographically close to end users thus resulting in low
network latency. To facilitate the movement of computation
tasks, the core and smart edge(s) are connected by a fast
network. A virtualized network function, or VNF, may
consist of one or more VMs running different software and
processes, on top of standard high-volume servers, switches
and storage, or cloud computing infrastructure.

As shown in Fig. 1, the system in general consists of a
set of n SIP servers located at different VMs with limited
processing and memory resources. The VMs are employed
instead of having custom hardware appliances for each
network function. At each smart edge, there are one or more
SIP servers implemented in a VM. At the core of the cloud,
there is a Virtual Load Balanced Call Admission Controller
(VLB-CAC), which acts as the central controller, collects
information about the available resources and the offered
load of all SIP servers, and through running an optimization
problem, finds the optimal resource allocation and
broadcasts the results to all SIP servers. Each server uses its
resources to initiate a session between the local users and
users in other domains. In this paper, it is assumed that the
binary symmetric matrix 𝐿𝑖𝑗 , 𝑖, 𝑗 ∈ {1, … , 𝑛} represents the

topology of the SIP server network. In this matrix, 𝐿𝑖𝑗 = 1

implies the presence of a communication link via SIP trunk
between servers 𝑖 and 𝑗, while 𝐿𝑖𝑗 = 0 indicates that the two

given SIP servers are not adjacent through a direct SIP trunk.
Note that the main diagonal elements of this matrix are all
zeros. SIP trunk is a service for making a connection
between the VoIP network devices that work with SIP
protocol. In fact, a SIP trunk is a virtual connection over the
public internet or a Virtual Private Network (VPN) that
connects VoIP equipment. Assume a two-dimensional array

ℂ with the size of (𝑛 × 𝑛), where ℂ𝑖𝑖 denotes the number of
local calls in server 𝑖 (where both caller and callee are

registered on the same server) and ℂ𝑖𝑗 shows the number of

outbound calls from server 𝑖 to server 𝑗. Let 𝐶𝑖𝑗 be the
optimal number of admitted calls established from server 𝑖 to

server 𝑗 where 𝐶𝑖𝑗 ≤ ℂ𝑖𝑗 . Regarding the optimal value

of 𝐶𝑖𝑗, 𝑅𝑘𝑙
𝑖𝑗

 shows the number of calls from origin 𝑖 to

destination 𝑗, which must be relayed from server 𝑘 to server 𝑙
(see Fig. 2).

Edge cloud

Hypervisor

Hardware

VM

SIP

Server 1

n

21

Central Controller

SIP Server

 Network

Edge cloud

Hypervisor

Hardware

VM

SIP

Server 2

Edge cloud

Hypervisor

Hardware

VM

SIP

Server n

Core cloud

Hypervisor

Hardware

VM

Virtual SIP Servers

Central Controller

Communication Network

VLB-

CAC

Fig. 1. A simple model of the proposed system in a two-tire cloud

k e ji l

Fig. 2. Transmitting calls from the origin 𝑖 to the destination 𝑗 assisted by

SIP servers 𝑘 and 𝑙

τ τ

tidletntctg

time

Fig. 3. The duty cycle of VLB-CAC

To perform its operation, each server 𝑖 relies on its

remaining CPU and memory resources, which are denoted as
𝑃𝑖 and 𝑀𝑖, respectively. The duty cycle of VLB-CAC is
depicted in Fig. 3. At the beginning of each time slot 𝜏, all
servers transmit how much the resources are remaining and
the number of new local and outbound requests to the VLB-
CAC through UDP packets. This critical information is
gathered in every 𝑡𝑔 units of time. By using the linear

program (LP) model proposed in the next part of this paper,

VLB-CAC determines the optimal values of 𝐶𝑖𝑗 and 𝑅𝑘𝑙
𝑖𝑗

 in

𝑡𝑐 and then broadcasts the results to the servers in 𝑡𝑛 (Fig.
3). After that, VLB-CAC enters into the idle state and waits
 𝑡𝑖𝑑𝑙𝑒 units of time for the next time slot 𝜏. In fact, a new
incoming call during 𝜏 should be entered into the hold-on
state by the SIP server until the next 𝜏. Compared to the
duration of a call, this time, is negligible which can also be
shortened by reducing 𝜏.

IV. VLB-CAC

In this section, we propose to design the VLB-CAC

controller in a way to optimally determine 𝐶𝑖𝑗 and 𝑅𝑘𝑙
𝑖𝑗

,

based on a new linear programming model. Prior to
proposing the model, we prove that the problem of overload
controlling in SIP networks is in the form of a mixed integer
linear program and is, therefore, NP-hard.

Theorem 1: Overload control problem for a set of 𝑛 > 2
SIP servers with limited CPU and memory resources is in
the form of a mixed integer nonlinear program (MINLP).

Proof: Let 𝐵𝑘𝑙
𝑖𝑗

 be a binary variable. Assume that 𝐵𝑘𝑙
𝑖𝑗

= 1

denotes that a call request from server 𝑖 to server 𝑗 could be

transmitted from servers 𝑘 to server 𝑙 and 𝐵𝑘𝑙
𝑖𝑗

= 0 denotes

that server 𝑘 and 𝑙 do not participate in transferring request
from server 𝑖 to server 𝑗. Given the limited resources in the

servers, the optimal values of 𝐵𝑘𝑙
𝑖𝑗

 , 𝐶𝑖𝑗, and 𝑅𝑘𝑙
𝑖𝑗

 could be

obtained through the following MINLP model:

 𝑚𝑎𝑥 ∑ ∑ 𝐶𝑖𝑗𝑛
𝑗=1

𝑛
𝑖=1 (1)

Subject to:
 𝐶𝑖𝑗 ≤ ℂ𝑖𝑗 , ∀𝑖, 𝑗 (I)
 ∑ 𝐵𝑘𝑙

𝑖𝑗
𝑅𝑘𝑙

𝑖𝑗𝑛
𝑘=1 = ∑ 𝐵𝑙𝑒

𝑖𝑗
𝑅𝑙𝑒

𝑖𝑗𝑛
𝑒=1 , ∀𝑖, 𝑗, 𝑙, 𝑖 ≠ 𝑙 , 𝑗 ≠ 𝑙 (II)

 ∑ 𝐵𝑘𝑙
𝑖𝑗

𝑅𝑘𝑙
𝑖𝑙 = 𝐶𝑖𝑙𝑛

𝑘=1 , ∀𝑖, 𝑗, 𝑙, 𝑖 ≠ 𝑙 (III)

 ∑ 𝐵𝑙𝑒
𝑖𝑗

𝑅𝑙𝑒
𝑙𝑗𝑛

𝑒=1 = 𝐶𝑙𝑗 , ∀𝑖, 𝑙, 𝑗, 𝑗 ≠ 𝑙 (IV)

 𝑅𝑘𝑙
𝑖𝑖 = 0 , ∀𝑖, 𝑘, 𝑙 (V)

 𝑅𝑘𝑖
𝑖𝑗

= 0 , ∀𝑖, 𝑗, 𝑘 (VI)

 𝐵𝑘𝑙
𝑖𝑗

− 𝐿𝑘𝑙 ≤ 0 , ∀𝑖, 𝑗, 𝑘 (VII)

 𝛼1𝐶𝑙𝑙 + 𝛼2(∑ ∑ ∑ (𝐵𝑙𝑘
𝑖𝑗

𝑅𝑙𝑘
𝑖𝑗𝑛

𝑘=1
𝑛
𝑗=1

𝑛
𝑖=1 + 𝐵𝑘𝑙

𝑖𝑗
𝑅𝑘𝑙

𝑖𝑗
)) ≤ 𝑃𝑙 , ∀l (VIII)

 𝛽1𝐶𝑙𝑙 + 𝛽2(∑ ∑ ∑ (𝐵𝑙𝑘
𝑖𝑗

𝑅𝑙𝑘
𝑖𝑗𝑛

𝑘=1
𝑛
𝑗=1

𝑛
𝑖=1 + 𝐵𝑘𝑙

𝑖𝑗
𝑅𝑘𝑙

𝑖𝑗
)) ≤ 𝑀𝑙 , ∀l (IX)

Variables: 𝐵𝑘𝑙
𝑖𝑗

∈ {0,1}, 𝐶𝑖𝑗 , 𝑅𝑘𝑙
𝑖𝑗

, 𝑃𝑙 , 𝑀𝑙 ≥ 0 , ∀𝑘, 𝑙, 𝑖, 𝑗.

 Note that Constraint (I) limits the number of admitted
calls to the number of existing call requests. Constraint (II)
offers a trade-off between the input and output flows;
meaning that it enforces equal total inward and outward
flows between each pair of origin and destination for
server 𝑙. Constraint (III) aggregates the total input flows to
server 𝑙 from origin 𝑖 passing through its neighbors. The next
constraint distributes the total output flows from server 𝑙 to
server 𝑗 among its neighbors. Constraint (V) prevents a flow
with the same origin and destination. Constraint (VI)
prevents the creation of certain loops in a given path, which
will be discussed in Section IV. A. Constraint (VII) limits

the binary variable 𝐵𝑘𝑙
𝑖𝑗

 in such a way that 𝐵𝑘𝑙
𝑖𝑗

 is zero

for 𝐿𝑘𝑙 = 0, and it could be either zero or one if 𝐿𝑘𝑙 = 1.
The next two constraints take into account the limited SIP
resources of servers. Constraint (VIII) allocates the residual
processing power of server 𝑙 to establish local and outbound
calls with coefficients 𝛼1 and 𝛼2. Similarly, Constraint (IX)
allocates the residual memory of server 𝑙 with coefficients

𝛽1 and 𝛽2. It is noteworthy that the two variables 𝑅𝑙𝑘
𝑖𝑗

 and 𝑅𝑘𝑙
𝑖𝑗

contribute evenly to the servers’ resources. To estimate
parameters 𝛼1, 𝛼2, 𝛽1, and 𝛽2, two linear programming
models are proposed in Section IV.C.

Although the objective function is linear, the nonlinear

constraints and the binary variables 𝐵𝑘𝑙
𝑖𝑗

 render the model an

MINLP which is generally NP-hard and unsolvable in
polynomial time [25, 26]. To overcome this drawback, we
propose certain modifications, which remove the
nonlinearity and allow the problem to take the form of an
LP.

A. Proposed Heuristic Method

Before discussing the proposed method, we should
elaborate on loop characterization. We divide the loops
between the origin and the destination into two types,
namely k-hop source loop (SL) and k-hop non-source loop
(nSL). In the former type, the source server participates in
the loop, whereas, in the later, the loop is created by servers
other than the source server. The proposed model in (1) can
only bind SLs as it applies Constraints (V) and (VI). Fig. 4
provides a visualization of the two loop types.

Although the proposed model in (1) increases the total
number of admitted calls, it can be easily shown that if

∑ ∑ 𝐶𝑖𝑗𝑛
𝑗=1

𝑛
𝑖=1 is considered as the objective function, it is

not possible to prevent nSLs. Given also that the nonlinear
model is NP-hard, the objective function should be modified
in such a way that not only maximizes the total number of
admitted calls but also minimizes CPU and memory usages
(Multi-objective). In multi-objective problems, several
objective functions are optimized simultaneously.

2 31

2 31 2 31

(a) k-hop Source Loop (SL)

(b) k-hop non Source Loop (nSL)

k= 0

k= 1

k= 2

2 31

Fig. 4. SL and nSL between the origin and destination flow path. Note

that ‘1’ and ‘3’ are the origin and destination servers, respectively.

An advantage of such a modification is that it would
prevent nSLs since loops creation requires resources. To this
end, we consider the following LP model:

𝑚𝑎𝑥 𝛾
∑ ∑ 𝐶𝑖𝑗𝑛

𝑗=1
𝑛
𝑖=1

∑ ∑ ℂ𝑖𝑗𝑛
𝑗=1

𝑛
𝑖=1

− 𝜑(
∑ 𝑝𝑙

𝑛
𝑙=1

∑ 𝑃𝑙
𝑛
𝑙=1

+
∑ 𝑚𝑙

𝑛
𝑙=1

∑ 𝑀𝑙
𝑛
𝑙=1

) (2)

 Subject to:
 𝐶𝑖𝑗 ≤ ℂ𝑖𝑗 , ∀𝑖, 𝑗 (I)
 ∑ 𝐿𝑘𝑙𝑅𝑘𝑙

𝑖𝑗𝑛
𝑘=1 = ∑ 𝐿𝑙𝑒𝑅𝑙𝑒

𝑖𝑗𝑛
𝑒=1 , ∀𝑖, 𝑗, 𝑙, 𝑖 ≠ 𝑙 , 𝑗 ≠ 𝑙 (II)

 ∑ 𝐿𝑘𝑙𝑅𝑘𝑙
𝑖𝑙 = 𝐶𝑖𝑙𝑛

𝑘=1 , ∀𝑖, 𝑙, 𝑖 ≠ 𝑙 (III)

 ∑ 𝐿𝑙𝑒𝑅𝑙𝑒
𝑙𝑗𝑛

𝑒=1 = 𝐶𝑙𝑗 , ∀𝑙, 𝑗, 𝑗 ≠ 𝑙 (IV)

 𝑅𝑘𝑙
𝑖𝑖 = 0 , ∀𝑖, 𝑘, 𝑙 (V)

 𝑅𝑘𝑖
𝑖𝑗

= 0 , ∀𝑖, 𝑗, 𝑘 (VI)

 𝛼1𝐶𝑙𝑙 + 𝛼2(∑ ∑ ∑ (𝐿𝑙𝑘𝑅𝑙𝑘
𝑖𝑗𝑛

𝑘=1
𝑛
𝑗=1

𝑛
𝑖=1 + 𝐿𝑘𝑙𝑅𝑘𝑙

𝑖𝑗
)) ≤ 𝑝𝑙 , ∀𝑙 (VII)

 𝛽1𝐶𝑙𝑙 + 𝛽2(∑ ∑ ∑ (𝐿𝑙𝑘𝑅𝑙𝑘
𝑖𝑗𝑛

𝑘=1
𝑛
𝑗=1

𝑛
𝑖=1 + 𝐿𝑘𝑙𝑅𝑘𝑙

𝑖𝑗
)) ≤ 𝑚𝑙 , ∀𝑙 (VIII)

 𝑝𝑙 ≤ 𝑃𝑙 , ∀l (IX)

 𝑚𝑙 ≤ 𝑀𝑙 , ∀𝑙 (X)

Variables: 𝐶𝑖𝑗 , 𝑅𝑘𝑙
𝑖𝑗

, 𝑝𝑙 , 𝑚𝑙 ≥ 0 , ∀𝑖, 𝑗, 𝑘, 𝑙.

Note that the connectivity between two servers is
developed using the matrix 𝐿𝑖𝑗 . A loose upper bound for the

optimal CPU and memory usages are given by 𝑝𝑙 and 𝑚𝑙,
respectively, and based on Constraints (IX) and (X), they
could reach the maximum 𝑃𝑙 and 𝑀𝑙 (the strict power
bound). Constraints (VII) and (VIII) would further help the

objective function prevent the creation of extra 𝑅𝑘𝑙
𝑖𝑗

, SL and

nSL loops. Coefficients 𝛾 and 𝜑 indicate the significance of

variables 𝐶𝑖𝑗 and resource usage (𝑝𝑙 and 𝑚𝑙) in the objective
function, respectively. In other words, they offer a trade-off
between the resource usage and network throughput.
Ultimately, this model enhances the total throughput of the
servers without any overload by using the optimal resource
allocation. Here, the overall throughput could be considered
as the total flow passing through the servers. Therefore,
taking into account the servers’ resources, VLB-CAC tries to
maximize call admission through distributing calls between
the servers.

B. VLB-CAC with Proactive Autoscaling

In model (2), the enhancement of the call admission rate
is dependent on server resources and the number of call
requests. To overcome the resource limitations, we propose
a novel resource autoscaling scheme at the VM level (Fig.
5). It attempts to scale just enough resources to minimize
resource waste, while tries to maximize call admission rate
regarding the number of call requests. Autoscaling is a
technique for dynamically adjusting the resources of VMs to
an appropriate flavor in response to an increase in demand.
A flavor is an available resource configuration for a VM on
a server. It defines the size of a virtual server that can be
launched (see Table III).

Fig. 5 shows that this scheme includes four modules.

Since autoscaling lasts for a few seconds [27], the proposed
method must be predictive-driven. Predictive autoscaling
algorithms predict future system behaviour and adjust
resources in advance to meet the future needs. Therefore,
Module 1 predicts the number of the call requests for the

next 𝜏 (ℂ𝑖�̂�(𝑛𝜏 + 1)). Module 2 specifies the required
resources for admission of the requests in each server
((𝑝𝑙

∗, 𝑚𝑙
∗)(𝑛𝜏+1)). Module 3 selects the most appropriate

flavor for each VM. The selected flavor might be more than
the resources specified for the VM. Considering the selected
flavors, Module 4 specifies an upper bound for the admitted
calls in each server which has been obtained by Module 2. In
this way, the method will be less sensitive to the predicted
results. Eventually, the scheme makes a resource scaling
decision for each server as a rule that is up or down or NOP
(no operation) in each 𝜏.

1) Module 1 - NLMS prediction system
We focus on proactive autoscaling that is based on

predictions of future workload (ℂ𝑖�̂�(𝑛𝜏 + 1)) based on the

past workload (ℂ𝑖𝑗(𝑛𝜏)). The most important method in this

area is time-series analysis. Time-series analysis could be
used to detect repeating patterns in the workload or to
estimate future values for resource allocation. Consequently,
the scaling action is done in advance. In order to apply time-
series analysis in autoscaling domain, a certain performance
metric will be periodically sampled at fixed intervals

(ℂ𝑖𝑗(𝑛𝜏)). The result will be a time-series containing a
sequence of last observations. Time-series methods
extrapolate this sequence to predict future values. Some of
the methods used for this purpose are Moving Average,
Autoregression, Autoregressive–Moving-Average (ARMA),
exponential smoothing, and machine learning techniques
[27].

We utilize the work of [28] that proposes a comparative
analysis among prediction techniques, used for developing a
dynamic prediction based the resource allocation strategy.
Among these techniques, the Normalized Least Mean
Square (NLMS) predictor is the one providing the best trade-
off between complexity, accuracy, and responsiveness.

The general problem of prediction can be stated as
follows: given a set of observations of a stochastic
process 𝑥(𝑛), generate an estimation �̂�(𝑛 + 𝑘) of the value
𝑥(𝑛 + 𝑘) that the process 𝑥 will assume 𝑘 steps ahead.
Given a vector of 𝑝 observations, 𝑥 = [𝑥(𝑛), 𝑥(𝑛 −
1), … 𝑥(𝑛 − 𝑝 + 1)], the predicted value �̂� is obtained by
�̂� = 𝜓(𝑥) where the function 𝜓 is called the predictor.

NLMS Prediction

System

Resource-aware:

LP model (12)

Select Flavor

Central Controller

Virtual SIP Servers

VLB-CAC with Autoscaling

4

3

n

i

2

1

Upper bound of

Admitted Calls:

 LP Model (13)
Selected flavors parameters:

Module 1 Module 2

Module 3 Module 4

flavors

* *

1
(,)l l n
p m

* *

1
(,)ij ij

kl n
C R

* *

1
(,)f f n
P M

* *
(1)()ij ij
nC c

 1
(_)

n
Selected flavors

* *
(1)()ij ij

kl kl nR r

Fig. 5. VLB-CAC with autoscaling scheme

Various categories of predictors have been studied;
however, considering the constraint on the complexity, the
linear prediction category is the best suited for our aim. A
linear prediction happens whenever the function 𝜓(𝑥) is

linear. Putting it differently, the problem is to specify the
impulse response ℎ(𝑛) of the linear filter ℎ such that:

�̂�(𝑛 + 𝑘) = 𝑥(𝑛)⨂ℎ(𝑛) = ∑ ℎ(𝑖)𝑥(𝑛 − 𝑖)
𝑝−1

𝑖=0
 (3)

 The filters coefficients can be determined according to
arbitrary optimality criteria. One of the widely adopted
prediction technique is the so called Linear Minimum Mean
Square Error (LMMSE) predictor, in which the values ℎ(𝑛)
are derived by minimizing the Mean Square Error of
prediction:

𝔼[𝜖2(𝑛)] = 𝔼[(𝑥(𝑛 + 𝑘) − �̂�(𝑛 + 𝑘))2] (4)

The problem of this predictor is that the derivation of the
LMMSE filter needs the knowledge of at least 𝑝 values of
the autocorrelation function of the stochastic process 𝑥(𝑛)
and the inversion of a 𝑝 × 𝑝 matrix. These facts make
LMMSE inappropriate for being used as on-line predictive
method. Therefore, we consider the NLMS method, which is
based on an adaptive mechanism. It does not require
previous knowledge of the autocorrelation structure of the
stochastic sequence [29]. The algorithm scheme is shown in
Fig. 6.

The filter coefficients are time varying and are tuned on
the basis of the feedback information carried by the
error ℇ(𝑛). We define the vector of filter coefficients at time
𝑛 with ℎ𝑛. The values of ℎ adapt dynamically in order to

decrease the Mean Square Error. Note that ℇ(𝑛) =
𝑥(𝑛 + 𝑘) − �̂�(𝑛 + 𝑘) and 𝑥𝑛 = [𝑥(𝑛), 𝑥(𝑛 − 1), … 𝑥(𝑛 −
𝑝 + 1)].

The NLMS works as follows: Initialize the
coefficient ℎ0; and for each new data, update the filter ℎ(𝑛)

according to the recursive equation.

ℎ𝑛+1 = ℎ𝑛 + 𝜇
ℇ(𝑛)𝑥𝑛

‖𝑥𝑛‖2
 (5)

where ‖𝑥𝑛‖2 = 𝑥𝑛𝑥𝑛
𝑇 and 𝜇 is a fixed parameter called step

size. Pursuant to [29], NLMS converges in the mean to
LMMSE predictor as long as 0 < 𝜇 < 2. At time 𝑛, the
values 𝑥(𝑛 + 𝑘), hence ℇ(𝑛), are not known. So, the value
ℇ(𝑛 − 𝑘) is used, instead, and the one step NLMS predictor
update equation becomes:

ℎ𝑛+1 = ℎ𝑛 + 𝜇
ℇ(𝑛 − 1)𝑥𝑛−1

‖𝑥𝑛−1‖
2 (6)

For our problem, the NLMS algorithm formulation can
be summarized as:

Parameters: 𝑝 = filter order, 𝜇 = step size

Initialization: ℎ(0) = 0

Computation: For 𝑛𝜏:

 ℂ𝑖𝑗(𝑛𝜏) = [ℂ𝑖𝑗(𝑛𝜏), ℂ𝑖𝑗(𝑛𝜏 − 1), … ℂ𝑖𝑗(𝑛𝜏 − 𝑝 + 1)] (7)

 ℂ𝑖�̂�(𝑛𝜏 + 1) = ℎ(𝑛𝜏) × ℂ𝑖𝑗𝑇
(𝑛𝜏) (8)

 ℎ(𝑛𝜏) = ℎ(𝑛𝜏 − 1) + 𝜇
ℇ(𝑛𝜏 − 1)ℂ𝑖𝑗(𝑛𝜏 − 1)

‖ℂ𝑖𝑗(𝑛𝜏 − 1)‖
2 (9)

 ℰ(𝑛𝜏) = ℂ𝑖𝑗(𝑛𝜏) − ℂ𝑖�̂�(𝑛𝜏) (10)

 ‖ℂ𝑖𝑗(𝑛𝜏)‖
2

= ℂ𝑖𝑗(𝑛𝜏)ℂ𝑖𝑗𝑇
(𝑛𝜏) (11)

h(n) ∑

+

–

 n

 x n k

ˆ()x n k x n

Fig. 6. NLMS algorithm

Where ℂ𝑖𝑗(𝑛𝜏) and ℂ𝑖�̂�(𝑛𝜏 + 1) are input and output of

Module 1, respectively. The NMLS predictor needs the
configuration of two parameters: the order 𝑝 and the step
size 𝜇. The order 𝑝 has been chosen to be 30, since it
produced a good performance based on the results analysis.
In the case of 𝜇, it is relevant to note that one of the
important advantages of using NLMS is that it is less
sensitive to the step size compared with other linear
predictors. In our experiments, we chose the step value of
0.8 as a trade-off between fast convergence and
responsiveness to input change. We run various tests to tune
this parameter. For small value of 𝜇, we apperceive that the
prediction function slowly converges and is unable to follow
sudden workload increase. For values of 𝜇 greater than 0.5,
the prediction function is not sensitive to step size and
results in a quicker response to workload changes.

2) Module 2 – Resource aware
The linear model presented below in (12) specifies the

minimum amount of the resources required for the
admission of the whole call requests in each server predicted
for the next 𝜏 ((𝑝𝑙

∗, 𝑚𝑙
∗)(𝑛𝜏+1)). It also specifies the optimal

values of 𝑅𝑘𝑙
𝑖𝑗

 and 𝐶𝑖𝑗 for the next 𝜏 ((𝐶𝑖𝑗∗
, 𝑅𝑘𝑙

𝑖𝑗 ∗
)(𝑛𝜏+1)).

Considering Constraint (I), the value of (𝐶𝑖𝑗∗
)(𝑛𝜏+1) is equal

to the number of the predicted requests by Module 1. Notice
that this model is adopted from model proposed in (2).

LP model: Resource-aware

𝑚𝑖𝑛
∑ 𝑝𝑙

𝑛
𝑙=1

∑ 𝑃𝑙
𝑛
𝑙=1

+
∑ 𝑚𝑙

𝑛
𝑙=1

∑ 𝑀𝑙
𝑛
𝑙=1

 (12)

Subject to:
 𝐶𝑖𝑗 = ℂ̂𝑖𝑗 , ∀𝑖, 𝑗 (I)
 Constraints II – VIII of model in (2) , (II - VIII)

 Variables: 𝐶𝑖𝑗 , 𝑅𝑘𝑙
𝑖𝑗

, 𝑝𝑙 , 𝑚𝑙 ≥ 0 , ∀𝑖, 𝑗, 𝑘, 𝑙.

3) Module 3 - Select flavor
Since creating a new flavor appropriate for the output of

Module 2 takes more time than resizing the existing flavors,
we assume that there are 𝒬 flavors with specific resources in

the form of 𝑓𝑙𝑎𝑣𝑜𝑟 [𝒬] = [𝑃𝑓 , 𝑀𝑓]. Module 3 selects the

most appropriate flavor for the VMs in each server
(Algorithm 1). Each VM resizes its flavor before reaching
the next 𝜏.

4) Module 4 - Upper bound of admitted calls
As there is a gap between each selected flavor and the

resources for the VMs in each server, an upper bound is
determined for admission of the call requests by the model
shown in (13), which is a derivative of the model in (2).

(𝐶𝑖𝑗 + 𝑐𝑖𝑗) and (𝑅𝑘𝑙
𝑖𝑗

+ 𝑟𝑘𝑙
𝑖𝑗

) are the upper bounds for

admission of the call requests based on the selected flavors.
In this way, the possibility of hold-on for the new calls
reduces.

Algorithm 1 Select Appropriate Flavors for next 𝜏
Input: 1:
𝑓𝑙𝑎𝑣𝑜𝑟 [𝒬] = [𝑃𝑓, 𝑀𝑓] 2:
𝑝𝑙

∗, 𝑚𝑙
∗ 3:

Output: 4:
for 𝑗 = 1 to number of SIP servers (n) 5:
 for 𝑖 = 1 to number of flavors (𝒬) 6:
 if 𝑓𝑙𝑎𝑣𝑜𝑟 [𝑖]. [𝑃𝑓] ≥ 𝑝𝑗

∗ then 7:
 if 𝑓𝑙𝑎𝑣𝑜𝑟 [𝑖]. [𝑀𝑓] ≥ 𝑚𝑗

∗ then 8:

 𝑆𝑒𝑙𝑒𝑐𝑡𝑒𝑑_𝑓𝑙𝑎𝑣𝑜𝑟[𝑗] = 𝑓𝑙𝑎𝑣𝑜𝑟 [𝑖] 9:
 break 10:
 end if 11:
 end if 12:
 end for 13:
end for 14:

 LP model: Upper bound of admitted calls

𝑚𝑎𝑥 ∑ ∑ 𝑐𝑖𝑗𝑛
𝑗=1

𝑛
𝑖=1 (13)

 Subject to:
 ∑ 𝐿𝑘𝑙(𝑅𝑘𝑙

𝑖𝑗 ∗
+ 𝑟𝑘𝑙

𝑖𝑗
)𝑛

𝑘=1 =

∑ 𝐿𝑙𝑒(𝑅𝑙𝑒
𝑖𝑗∗

+ 𝑟𝑙𝑒
𝑖𝑗

)𝑛
𝑒=1 ,

∀𝑖, 𝑗, 𝑙, 𝑖 ≠ 𝑙 , 𝑗 ≠ 𝑙 (I)

 ∑ 𝐿𝑘𝑙(𝑅𝑘𝑙
𝑖𝑙 ∗

+ 𝑟𝑘𝑙
𝑖𝑙) = (𝐶𝑖𝑙∗

+𝑛
𝑘=1 𝑐𝑖𝑙) , ∀𝑖, 𝑙, 𝑖 ≠ 𝑙 (II)

 ∑ 𝐿𝑙𝑒(𝑅𝑙𝑒
𝑙𝑗∗

+ 𝑟𝑙𝑒
𝑙𝑗

)𝑛
𝑒=1 = (𝐶𝑙𝑗∗

+ 𝑐𝑙𝑗) , ∀𝑙, 𝑗, 𝑗 ≠ 𝑙 (III)

 𝑅𝑘𝑙
𝑖𝑖 ∗

+ 𝑟𝑘𝑙
𝑖𝑖 = 0 , ∀𝑖, 𝑘, 𝑙 (IV)

 𝑅𝑘𝑖
𝑖𝑗 ∗

+ 𝑟𝑘𝑖
𝑖𝑗

= 0 , ∀𝑖, 𝑗, 𝑘 (V)

 𝛼1(𝐶𝑙𝑙∗
+ 𝑐𝑙𝑙) + 𝛼2(∑ ∑ ∑ (𝐿𝑙𝑘(𝑅𝑙𝑘

𝑖𝑗 ∗
+ 𝑟𝑙𝑘

𝑖𝑗
)𝑛

𝑘=1
𝑛
𝑗=1

𝑛
𝑖=1 +

𝐿𝑘𝑙(𝑅𝑘𝑙
𝑖𝑗 ∗

+ 𝑟𝑘𝑙
𝑖𝑗

))) ≤ 𝑃𝑓
∗ ,

∀𝑙 (VI)

 𝛽1(𝐶𝑙𝑙∗
+ 𝑐𝑙𝑙) + 𝛽2(∑ ∑ ∑ (𝐿𝑙𝑘(𝑅𝑙𝑘

𝑖𝑗 ∗
+ 𝑟𝑙𝑘

𝑖𝑗
)𝑛

𝑘=1
𝑛
𝑗=1

𝑛
𝑖=1 +

𝐿𝑘𝑙(𝑅𝑘𝑙
𝑖𝑗 ∗

+ 𝑟𝑘𝑙
𝑖𝑗

))) ≤ 𝑀𝑓
∗ ,

∀𝑙 (VII)

Variables: 𝑐𝑖𝑗 , 𝑟𝑘𝑙
𝑖𝑗

≥ 0 , ∀𝑖, 𝑗, 𝑘, 𝑙.

VLB-CAC sends the values of (𝐶𝑖𝑗∗
+ 𝑐𝑖𝑗 ∗

)(𝑛𝜏+1) and

(𝑅𝑘𝑙
𝑖𝑗 ∗

+ 𝑟𝑘𝑙
𝑖𝑗∗

)(𝑛𝜏+1) and the selected flavors for the next 𝜏 to

the servers. Each server has an autoscaling rule table, which
resizes its VM (Table I).

TABLE I. AUTOSCALING RULE TABLE

𝐴𝑐𝑡𝑖𝑜𝑛𝑠 𝑅𝑢𝑙𝑒𝑠

NOP (selected flavor)(nτ) = (selected flavor)(nτ+1)

Scale UP (selected flavor)(𝑛𝜏) < (selected flavor)(𝑛𝜏+1)

Scale Down (selected flavor)(𝑛𝜏) > (selected flavor)(𝑛𝜏+1)

C. Calculation of α and β

We propose the following two linear models to
approximate the coefficients 𝛼 and 𝛽. To this end, consider

the quadruple (�́�𝑞
𝑖𝑖, �́�𝑖𝑗,𝑞

𝑖𝑗
 , �́�𝑞 , �́�𝑞)𝑞=1,…,ℎ, where �́�𝑞

𝑖𝑖 is the

number of local calls in server 𝑖, �́�𝑖𝑗,𝑞
𝑖𝑗

 is the number of

outbound calls of server 𝑖, �́�𝑞 and �́�𝑞 are CPU and memory

usages in server 𝑖, respectively. We acquire all ℎ samples of
this quadruple by conducting tests on a real testbed

1
.

Consider the following:

 𝑚𝑖𝑛 ∑ 𝑥𝑞
𝑛
𝑞=1 (14)

Subject to:
 �́�𝑞 − (𝛼1�́�𝑞

𝑖𝑖 + 𝛼2�́�𝑖𝑗,𝑞
𝑖𝑗

) ≤ 𝑥𝑞 , 𝑞 = 1, … , 𝑛 (I)

𝛼1 + 𝛼2 =

𝑚𝑎𝑥 {�́�𝑞}

𝑚𝑎𝑥 {�́�𝑞
𝑖𝑖}

 , 𝑞 = 1, … , 𝑛 (II)

Variables: 𝛼1, 𝛼2, 𝑥𝑞 ≥ 0 , 𝑞 = 1, … , 𝑛,

 𝑚𝑖𝑛 ∑ 𝑦𝑞
𝑛
𝑞=1 (15)

Subject to:
 �́�𝑞 − (𝛽1�́�𝑞

𝑖𝑖 + 𝛽2�́�𝑖𝑗,𝑞
𝑖𝑗

) ≤ 𝑦𝑞 , 𝑞 = 1, … , 𝑛 (I)

1
 The tests are performed on SAVI testbed.

𝛽1 + 𝛽2 =
𝑚𝑎𝑥 {�́�𝑞}

𝑚𝑎𝑥 {�́�𝑞
𝑖𝑖}

 , 𝑞 = 1, … , 𝑛 (II)

Variables: 𝛽1, 𝛽2, 𝑦𝑞 ≥ 0 , 𝑞 = 1, … , 𝑛.

Considering the first constraints of (14) and (15), the

objective functions are designed to minimize the sum of the
difference between measured values of �́�𝑞 and �́�𝑞 with

𝛼1�́�𝑞
𝑖𝑖 + 𝛼2�́�𝑖𝑗,𝑞

𝑖𝑗
 and 𝛽1�́�𝑞

𝑖𝑖 + 𝛽2�́�𝑖𝑗,𝑞
𝑖𝑗

, respectively. In other

words, 𝑥𝑞 denotes the difference between measured �́�𝑞

and 𝛼1�́�𝑞
𝑖𝑖 + 𝛼2�́�𝑖𝑗,𝑞

𝑖𝑗
, and 𝑦𝑞 denotes the difference between

�́�𝑞 and 𝛽1�́�𝑞
𝑖𝑖 + 𝛽2�́�𝑖𝑗,𝑞

𝑖𝑗
, respectively. Objective functions

(14) and (15) seek the optimal values for 𝛼 and 𝛽 by
minimizing 𝑥𝑞 and 𝑦𝑞 . This is because to minimize to the

objective functions, the first constraints has to diminish �́�𝑞 −

(𝛼1�́�𝑞
𝑖𝑖 + 𝛼2�́�𝑖𝑗,𝑞

𝑖𝑗
) and �́�𝑞 − (𝛽1�́�𝑞

𝑖𝑖 + 𝛽2�́�𝑖𝑗,𝑞
𝑖𝑗

) in (15).

Hence, 𝛼1�́�𝑞
𝑖𝑖 + 𝛼2�́�𝑖𝑗,𝑞

𝑖𝑗
 approaches �́�𝑞 only when 𝛼 is

optimized. Note that the second constraints are imposed for
the purpose of normalization of the first constraints.

V. PERFORMANCE EVALUATION

A. Simulations and Numerical Results

To simulate and assess the performance of the proposed
model in Eq. (2), we implement our work in MATLAB. We
considered the topology shown in Fig. 7; moreover, the three
scenarios of Table II are investigated with different 𝛾 and 𝜑
(represented in four Cases: f1 to f4). In all scenarios, calls are

generated in random with the normal distribution (ℂ𝑖𝑗).
The values of 𝑀𝑙 and 𝑃𝑙 (𝑙: 1, … , 𝑛) are set to 100 for all

servers. 𝜏 is set to 3 seconds for all runs. Furthermore, for 𝛼
and 𝛽 coefficients, the obtained values in Section V.B.2 are
considered. These values are 0.07841 and 0.02158 for 𝛼1

and 𝛼2 and 0.06998 and 0.01997 for 𝛽1 and 𝛽
2
, respectively.

Figs. 8 and 9 illustrate optimal values of 𝑝𝑙 and 𝑚𝑙 for
all servers. In addition, Fig. 10 presents optimal call
admission rates for different cases in different scenarios. In
these figures, for all scenarios, by considering different cases
(f1 to f4), the resource usage and call admission rates show
an increasing trend.

In this regard, the ratio between parameters 𝛾 and 𝜑
illustrates the importance of call admission or resource
preservation. In case f1, resource preservation is more
significant as compared to case f4. In contrast, in case f4, the
maximum call admission is preferred, even if it results in
higher resource consumption (Fig. 10). By making a trade-
off between these parameters, it is possible to promote the
call admission rates and optimal usage of the resources.
Moreover, regarding the amount of load from Scenario 1 to
Scenario 3, Figs. 8 and 9 reveal that resource usages would
be raised; however, the input load of the network must be so
high that even using the entire resource, it is not possible to
respond to all input calls (Fig. 10, Scenario 3, cases f3 and
f4). In Scenario 1, the SIP servers do not enter the overload
condition, as all input loads are admissible by using the
limited amount of resources (Fig. 10, Scenario 1, cases f3
and f4).

4

3

6

5

2

1

User

Agent

User

Agent

User

Agent

User

Agent

User

Agent

User

Agent

Fig. 7. The analyzed topology

TABLE II. THE SCENARIOS

ℂ𝑖𝑗 ∑ ∑ ℂ𝑖𝑗𝑛
𝑗=1

𝑛
𝑖=1

8 60 30 48 20 10

54 48 54 20 50 10

12 40 30 100 44 44

14 50 46 30 20 10

20 54 20 30 50 50

15 54 40 25 40 50

Scenario 1 (low load)

1300

58 93 65 64 60 50

40 42 70 70 95 60

92 60 30 70 65 40

94 60 86 20 30 50

80 70 50 60 76 90

85 70 44 70 95 46

Scenario 2 (medium load)

2300

65 105 80 84 120 110

98 100 75 80 105 70

98 120 90 125 75 78

100 115 95 80 90 60

94 102 60 108 86 100

85 78 104 94 105 66

Scenario 3 (high load)

3300

Fig. 8. The optimal CPU usages (𝑝𝑙)

Fig. 9. The optimal memory usage (𝑚𝑙)

Fig. 10. The optimal call admission rate

For instance, in this scenario, in Case f3, the optimal
value of 𝑚1 and 𝑝1 for admitting all input calls are 15.3214
and 20.64201, respectively. In Scenario 2, the offered load is
higher than that of Scenario 1; the maximum call admission
rate can be obtained in f4 (Fig. 10). However, in this case,
more resources are used compared to the previous scenario
(Figs. 8 and 9). The comparison of Figs. 8, 9, and 10
indicates that in Scenario 3 even using the entire servers’

0

10

20

30

40

50

60

70

80

90

100

f1 f2 f3 f4 f1 f2 f3 f4 f1 f2 f3 f4

C
P

U
 u

sa
g

e
(%

)

Scenario 1 Scenario 2 Scenario 3

p1 p2 p3 p4 p5 p6

f1: =1, =2

f2: =1, =1.5

f3: =1, =1

f4: =1, =0.5

0

10

20

30

40

50

60

70

80

90

100

f1 f2 f3 f4 f1 f2 f3 f4 f1 f2 f3 f4

M
em

o
ry

 u
sa

g
e

(%
)

Scenario 1 Scenario 2 Scenario 3

m1 m2 m3 m4 m5 m6

f1: =1, =2

f2: =1, =1.5

f3: =1, =1

f4: =1, =0.5

0

10

20

30

40

50

60

70

80

90

100

f1 f2 f3 f4 f1 f2 f3 f4 f1 f2 f3 f4

C
a

ll
 A

d
m

is
ii

o
n

 R
a

te
 (

%
)

Scenario 1 Scenario 2 Scenario 3

f1: =1, =2

f2: =1, =1.5

f3: =1, =1

f4: =1, =0.5

resources, it is not possible to reach optimum call admission
rate greater than 86%, as the input load would exceed the
network capacity and the extra load would be blocked. By
solving the model in Eq. (2), in addition to determining the

optimal values of 𝑚𝑙, 𝑝𝑙 , and 𝐶𝑖𝑗, the optimal 𝑅𝑘𝑙
𝑖𝑗

 is also

determined. For instance, in Scenario 3 and Case f4, the total
call requests from path 1 to 6 (ℂ16) is 65 in which 27.5 is
admitted (𝐶16). Distribution of these admitted calls is shown
in Fig. 11, 𝐶16 is distributed between two paths to reach the

maximum objective function as path 1: (𝑅13
16 = 11.2, 𝑅35

16 =
11.2, 𝑅56

16 = 11.2) and path 2: (𝑅12
16 = 16.3, 𝑅24

16 =
16.3, 𝑅46

16 = 16.3). For all Cases f1 to f4, the load is
distributed among the servers in a way that the maximum
value for the objective function is achieved. The average
time for each run (𝑡𝑐) is almost 0.95 seconds, which can be
ignored compared to the call length.

B. Implementation and the Experimental Results

This section is organized in 8 subsections. We describe
our implementation details in Section V.B.1. In Section
V.B.2 measurements of 𝛼 and 𝛽 are mentioned. In Section
V.B.3 to V.B.5, we evaluate the VLB-CAC and give
comprehensive results. Performance evaluation of VLB-
CAC with autoscaling (Section V.B.6 and V.B.7), and the
effect of time slot 𝜏 (Section V.B.8) are documented in the
remaining subsections.

1) Practical considerations and configurations
To evaluate the performance of the proposed VLB-CAC

in a real environment, we implanted it in the Natural
Sciences and Engineering Research Council of Canada
Strategic Network for Smart Applications on Virtual
Infrastructure (SAVI) [11]. The SAVI project outlines a
cloud system composed of two cloud types: core and smart
edge (Fig. 12). As shown in Fig. 13, SAVI nodes incorporate
open source software and hardware including OpenStack,
OpenFlow and NetFPGAs [11]. Janus is the super controller
of SAVI testbed. It controls converged heterogeneous
resources (OpenStack, OpenFlow, FPGAs, GPUs). While
Janus is controlling SAVI testbed, it utilizes Whale (a
topology manager). Whale collects cloud computing
resource information using OpenStack and networking
resource information using OpenFlow and provides the
status of all resources and their connectivity to Janus.

We define two different topologies namely Local and
Wide shown in Figs. 14 (A) and (B), respectively. In the
Local topology, all VMs are located at the University of
Toronto (UofT) edge cloud while in the Wide topology, each
VM is located on a different edge of the SAVI testbed.

4

3

6

5

2

1

𝑅12
16 = 16.3

𝑅13
16 = 11.2 𝑅35

16 = 11.2

𝑅56
16 = 11.2

𝑅46
16 = 16.3 𝑅24

16 = 16.3

Fig. 11. Load distribution in paths among servers 1 through 6 in Scenario 3
Case f4, (signaling paths)

Fig. 12. Deployment of SAVI testbed in Canadian universities [11]

Fig. 13. Structure of a SAVI node [11]

We use the open source Elastix v.3 software [30] to
implement the SIP servers on VM1 to VM6. On VM7, the
open source SIPp software [31] is used as well to implement

the user agents and inject the traffic (ℂij). We implemented
the proposed VLB-CAC on VM8, using PuLP [32]. This
software is used to solve the mathematical models. PuLP is
an LP modeler written in Python. We used Python, version
3.4. Furthermore, to make a connection between SIP servers,
SIP trunk was used. For example, in VM1, only two SIP
trunk connections to VM2 and VM3 have been defined. We
use Centos as the operating system of VMs 1 to 6 and
Ubuntu for VMs 7 and 8.

Each VM in the SAVI testbed can have one of the four
flavors shown in Table III. All the VMs 1-8 have
homogeneous features and their initial flavor is ml.small. By
running the following command, each VM can be resized:
nova resize <VM Instance Name> <new flavor>.
For example, by running the command
nova resize VM1 m1.medium, the VM 1 flavor can be
changed to ml.medium.

VM 2 VM 4

VM 1 VM 3

VM 6

VM 5

VM 7 VM 8

EDGE UofT

Proxy SIP trunk

Server

Proxy Proxy

ProxyProxyProxy

Server Server

ServerServerServer

SIP trunk

SIP trunk

SIP trunkSIP trunk

SIP trunkSIP trunk

VLB-CAC
Call

Generator

(A)

EDGE Waterloo

SAVI

Proxy
SIP trunk

Server

Proxy Proxy

ProxyProxyProxy

Server Server

ServerServerServer

SIP trunk

SIP trunk

SIP trunkSIP trunk

SIP trunkSIP trunk

EDGE York EDGE Toronto

EDGE CarltonEDGE McGill EDGE Victoria

EDGE UofT

Call

Generator
VLB-CAC

VM 2 VM 4 VM 6

VM 5VM 3VM 1

VM 8VM 7

EDGE UofT

(B)

Fig. 14. (A): Local topology, (B): Wide topology

TABLE III. AVAILABLE VM FLAVORS SPECIFICATIONS ON SAVI TB

Disk (GB) vCPUs Memory (MB) Flavor
20 1 2048 m1.small
40 2 4096 m1.medium
80 4 8192 m1.large

160 8 16384 m1.xlarge
The reports of Elastix v.3 software are used to measure

call status, and OProfile software [33] is utilized to measure
CPU and memory usages. The values of the CPU and
memory usages (𝑃𝑖 and 𝑀𝑖) are transferred to VLB-CAC
through the use of Psutil tools [34] on each SIP server. Psutil
(Python system and process utilities) is a cross-platform
library for retrieving information on running processes and
system utilization (CPU, memory, disks, and network) in
Python.

Elastix v.3 software is a SIP server with an SIP proxy
called SIP Proxy Kamailio (OpenSER) [35]. The proxy node
is responsible for directing the call requests while the server
node is responsible for responding to them. The optimal

values of 𝐶𝑖𝑗 and 𝑅𝑖𝑙
𝑘𝑗

 calculated by VLB-CAC are

transferred to VMs using UDP messages and are set in its
kamailio configuration file (kamailio.cfg). It is important to
note that if these values are non-integer, they will be
rounded down and then sent to the nodes.

Suppose a call request (“INVITE” message) has reached
an SIP server on VM i. Kamailio detects the message’s
initial source and final destination based on the message
field headers:

 If both source and destination of the call are node i:

If 𝐶𝑖𝑖 > 0, this message is delivered to Elastix SIP server

on VM i to be handle and 𝐶𝑖𝑖 is decreased by 1. If 𝐶𝑖𝑖 = 0,
then this message is dropped in the fastest time possible
before sending the “180 ringing” message. This makes the
amount of resources that the SIP server spends for the
dropped calls almost insignificant. This is also evident from
the reported results.

 If the request source is node i and the destination is node j:

If 𝐶𝑖𝑗 > 0, the value of 𝑅𝑖𝑙
𝑖𝑗

, 𝑙 ∈ {𝑖 𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑟𝑠} is

checked for all ls. If there are several 𝑅𝑖𝑙
𝑖𝑗

> 0, one is chosen

randomly and the “INVITE” is sent to node l through the

related SIP trunk. Then, 𝑅𝑖𝑙
𝑖𝑗

 and 𝐶𝑖𝑗 are decreased by 1. If

𝐶𝑖𝑗 = 0, then this message is dropped as suggested
previously.

 If the request source is node k and the destination is node j:

The value of 𝑅𝑖𝑙
𝑘𝑗

, 𝑙 ∈ {𝑖 𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑟𝑠} is checked for all ls

and if there are several 𝑅𝑖𝑙
𝑘𝑗

> 0, one is chosen randomly and

the “INVITE” message is sent to node l through the related
SIP trunk.

 If the request source is node k and the destination is node i:
This message is delivered to Elastix node i to be handled.

2) Measurement of α and β
To compute coefficients 𝛼 and 𝛽, random inbound and

outbound calls were established in the SIP server on VM 1
and the CPU and memory usages of the server were
measured. This experiment was repeated for 100 times and
the results were gathered in a dataset. By solving Eq. (3) and
(4), 𝛼1 and 𝛼2 were determined as 0.07841 and 0.02158, and
𝛽1 and 𝛽2 were obtained 0.06998 and 0.01997, respectively.
In the following, each experiment is conducted in a period of
𝜏 = 3𝑠 unless mentioned otherwise.

3) Effect of VLB-CAC on the server’s performance
Fig. 15 shows the comparison of the SIP servers’

performances in both local and Wide topologies in the

presence and absence of VLB-CAC. Fig. 15 (A) and (B)
(without VLB-CAC bar graph) confirm that if the incoming
calls and network resources of the SIP servers are not
monitored, the increase in offered load will cause resource
saturation (Scenario 3). In this case, the servers are full of
“INVITE” messages and send a retransmission request for
the lost messages (Fig. 15 (C), without VLB-CAC bar
graph). As already mentioned, this leads to more
consumption of resources, increases the average call setup
delay (the time between sending “INVITE” from the user
agent and receiving “200 OK” from the SIP server) and
causes a sharp drop in throughput (the number of serviced
calls in a time unit) (Fig. 15 (D) , (E), without VLB-CAC
bar graph). The drop in the number of serviced call steadily
increases the retransmission rate (Fig. 15 (C), without VLB-
CAC bar graph) and the resource consumption (Fig. 15 (A),
(B), without VLB-CAC bar graph) and worsens the
situation.

In the presence of VLB-CAC, servers will never face
resources saturation (Fig. 15 (A), (B)) and, therefore, even in
the case of overload (Scenario 3), server performance will
not drop and the server will not suffer the consequences of
the overload (Fig. 15 (E)). For example, in Case f4 in
Scenario 3 and in the Wide topology, without a sudden
increase of the retransmission rate and the average call setup
delay (Fig. 15 (C) , (D)), by spending an average of 98% of
the CPU and 92% of the memory of all SIP servers, 2837
calls are admitted from 3300 call requests, and 2727 calls are
serviced (Fig. 15 (E)), whereas in the absence of VLB-CAC
in this scenario, only 750 call requests are serviced (Fig. 15
(E), without VLB-CAC bar graph).

Moreover, as shown in Table II, in Case f2 of the second
scenario, there are 2300 call requests created in total among
which 1683 are admitted by VLB-CAC, and thus the
admission rate reaches to 71.22% (Fig. 10). In the Local
topology, among 1638 calls, only 49 calls do not end
successfully while 1589 calls are serviced successfully (Fig.
15 (E)). Also in the Wide topology, from among 1638 calls,
only 88 calls did not end successfully while 1550 calls are
serviced successfully. According to Fig. 15 (E) repeating this
experiment will clearly show that rounding the VLB-CAC
values does not affect the number of the successfully
serviced calls since the constraints of the proposed model in
Eq. (2) are still in a feasible region.

Therefore, in the absence of VLB-CAC, since the
resources are fully occupied, throughput is very low. While
in the presence of VLB-CAC, an optimum throughput can
be achieved through resource management. The results
given in Fig. 15 (D) show that in Scenario 1, the average call
setup delay is a little more in the presence of VLB-CAC.
This is due to the time spots of 𝑡𝑔, 𝑡𝑐, and 𝑡𝑛 in VLB-CAC.

VLB-CAC is able to prevent the retransmission rate increase
and control the average delay in Scenarios 2 and 3 through
spending these time spots.

4) Simulation & implementation results comparison
In this subsection, we compare the simulation and

implementation results together to evaluate the validation of
both the simulation and the implementation models. Figs. 16
and 17, show resource consumption of all VMs for Cases f2
and f4 in Scenario 2 (medium load). The results reported in
these figures confirm that the performance of the SIP servers
in both Wide and Local topologies are very close to that
obtained by the simulation. Note that as SAVI uses the high-
speed Layer 2 switching with 10GB links in its testbed, the
end to end delay and the processing time is negligible, so the
results for both Local and Wide topology are close to each
other.

A: Average CPU consumption of VMs (�̅�𝑙)

B: Average memory consumption of VMs (�̅�l)

C: “INVITE” message retransmission rate

D: Average call setup delay

E: Number of admitted and serviced call requests

Fig. 15. Comparison of the results obtained in SAVI testbed with and without VLB-CAC

5) Resizing the virtual machines
As shown in Fig. 15 (E), VLB-CAC reaches an

admission rate of 100% in both Scenarios 1 and 2, but as
already noted in Fig. 10 and Fig. 15 (E), in Scenario 3, an
optimum admission rate greater than 86% cannot be
achieved due to the network resources input overload. In this
situation, to achieve a greater admission rate and
consequently greater service rate, we can use the resizing
capability of the VM resources in the SAVI testbed. By
changing all VMs from small to medium flavor and for
Wide topology, Scenario 3 was performed with 𝜏 = 3𝑠. For
this flavor, the new values of 𝛼1 and 𝛼2 are 0.08012 and
0.02329 and for 𝛽1 and 𝛽2 are 0.07169 and 0.02168,
respectively. In Fig. 18, before and after the flavor change,
the CPU and memory usages and the number of admitted
calls are shown.

After resizing, VLB-CAC can achieve a call admission
rate of 100% for Cases f3 and f4 of Scenario 3, (Fig. 18 (E)).
As shown in Fig. 18 (F) for Cases f3 and f4 in Scenario 1
and Case f4 in Scenario 2, the call rejection rate is zero. In
Scenario 3, by resizing the VMs, the call rejection rate can
reach zero (Fig. 18 (F), Scenario 3 Cases f3 and f4).
Furthermore, the comparison of the results obtained before
and after resizing confirm that more call requests can be
admitted and serviced after resizing.

Fig. 16. Comparison of CPU usage in both simulation and implementation
mode for Local and Wide topologies for two Cases f2 and f4

Fig. 17. Comparison of memory usage in both simulation and

implementation mode for Local and Wide topologies for two Cases f2 and

f4

0

10

20

30

40

50

60

70

80

90

100

f1 f2 f3 f4 without
VLB-CAC

f1 f2 f3 f4 without
VLB-CAC

f1 f2 f3 f4 without
VLB-CAC

A
ve

ra
g

e
C

P
U

 u
sa

g
e

(%
)

Scenario 1 Scenario 2 Scenario 3

Local Wide

f1: =1, =2

f2: =1, =1.5

f3: =1, =1

f4: =1, =0.5

f1: =1, =2

f2: =1, =1.5

f3: =1, =1

f4: =1, =0.5

f1: =1, =2

f2: =1, =1.5

f3: =1, =1

f4: =1, =0.5

f1: =1, =2

f2: =1, =1.5

f3: =1, =1

f4: =1, =0.5

0

10

20

30

40

50

60

70

80

90

100

f1 f2 f3 f4 without
VLB-CAC

f1 f2 f3 f4 without
VLB-CAC

f1 f2 f3 f4 without
VLB-CAC

A
ve

ra
g

e
M

em
o

ry
 u

sa
g

e
(%

)

Scenario 1 Scenario 2 Scenario 3

Local Wide

f1: =1, =2

f2: =1, =1.5

f3: =1, =1

f4: =1, =0.5

0

500

1000

1500

2000

2500

3000

3500

f1 f2 f3 f4 without
VLB-CAC

f1 f2 f3 f4 without
VLB-CAC

f1 f2 f3 f4 without
VLB-CAC

R
et

ra
n

sm
is

si
o

n
 R

a
te

 (
R

P
S

)

Scenario 1 Scenario 2 Scenario 3

Local Wide

f1: =1, =2

f2: =1, =1.5

f3: =1, =1

f4: =1, =0.5

1

10

100

1000

10000

100000

f1 f2 f3 f4 without
VLB-CAC

f1 f2 f3 f4 without
VLB-CAC

f1 f2 f3 f4 without
VLB-CAC

A
ve

ra
g

e
C

a
ll

 S
et

u
p

 D
el

a
y

(m
s)

Scenario 1 Scenario 2 Scenario 3

Local Wide

f1: =1, =2

f2: =1, =1.5

f3: =1, =1

f4: =1, =0.5

0
300
600
900

1200
1500
1800
2100
2400
2700
3000
3300

f1 f2 f3 f4 without
VLB-CAC

f1 f2 f3 f4 without
VLB-CAC

f1 f2 f3 f4 without
VLB-CAC

C
a

ll
 R

a
te

 (
C

P
S

)

Scenario 1 Scenario 2 Scenario 3

Total Calls Admitted by VLB-CAC
Serviced in SAVI(Local) Serviced in SAVI(Wide)

f1: =1, =2

f2: =1, =1.5

f3: =1, =1

f4: =1, =0.5

0

10

20

30

40

50

60

70

80

90

100

VM 1 VM 2 VM 3 VM 4 VM 5 VM 6

C
P

U
 u

sa
g

e
(%

)

Scenario 2

pl(Simulation)-f2 pl(Implementation-Local)-f2
pl(Implementation-Wide)-f2 pl(Simulation)-f4
pl(Implementation-Local)-f4 pl(Implementation-Wide)-f4

f2: =1, =1.5

f4: =1, =0.5

0

10

20

30

40

50

60

70

80

90

100

VM 1 VM 2 VM 3 VM 4 VM 5 VM 6

M
em

o
ry

 u
sa

g
e

(%
)

Scenario 2

ml(Simulation)-f2 ml(Implementation-Local)-f2

ml(Implementation-Wide)-f2 ml(Simulation)-f4

ml(Implementation-Local)-f4 ml(Implementation-Wide)-f4

f2: =1, =1.5

f4: =1, =0.5

A: CPU consumption per VM (𝑝𝑙)

B: Average CPU consumption of VMs (�̅�𝑙)

C: Memory consumption per VM (𝑚𝑙)

D: Average memory consumption of VMs (�̅�𝑙)

E: Number of admitted and serviced call requests by VLB-CAC

F: Call requests rejection rate by VLB-CAC

Fig. 18. Results of resizing VMs in SAVI testbed with VLB-CAC (Wide topology)

For example, in Case f1 of Scenario 3, the values of �̅�𝑙
before and after resizing are equal to 27% and 47% (Fig. 18
(B)), respectively; the values of �̅�𝑙 before and after resizing
are equal to 22% and 35% (Fig. 18 (D)), respectively. The
number of admitted calls before and after resizing are equal
to 594 and 1500, respectively. The number of serviced
requests in the Wide topology before and after resizing are
equal to 564 and 1430 (Fig. 18 (E)), respectively. Therefore,
resources can be virtualized to increase throughput in SIP
networks.

In Fig. 18, parts (A) to (D), it is emphasized that none of
𝑝𝑙s and 𝑚𝑙s have a significant difference with �̅�𝑙s and �̅�𝑙s. It
means that the traffic has been uniformly distributed
between all servers. Note that the mean and standard

deviation of ℂ𝑖𝑗 in Scenario 3 are equal to 91.66 and 14.24,
respectively. Furthermore, all VMs have the same flavor
before and after resizing. An example of a load distribution
is provided in Fig. 19 (A). The distribution of ℂ16 before
resizing in the Wide topology in Case f4 of Scenario 3 is
shown in this figure. The simulation results of this case were
already shown in Fig. 11.

A comparison between Figs. 19 (A) and 11 will lead to
this understanding that the implementation results are very
close to the simulation results and therefore, the settings of
the configuration files (kamailio.cfg) of each node proxy for

directing the admitted calls has been done properly. Among
65 requests (ℂ16), 27.5 (𝐶16) requests are admitted and
routed by VLB-CAC (Fig. 11), but before sending the results

to the servers, the values of 𝐶𝑖𝑗 and 𝑅𝑘𝑙
𝑖𝑗

 are rounded down.

At the end of 𝜏, a total of 25 “INVITE” requests are serviced
and distributed between two paths (Fig. 19 (A)). After
resizing, all the 65 requests are admitted and 62 requests are
serviced based on the distribution shown in Fig. 19 (B).

6) Autoscaling of virtual machines
All previous experiments were only conducted in a

period of 𝜏 = 3s. This section examines the carried load and
the average resource consumption in Case f4 in the Wide
topology. We evaluate the system for a time interval equal to
3000 seconds. Two different cases 𝜏 = 3𝑠 and 𝜏 = 3.5s are
considered (Fig. 20). In case 𝜏 = 3𝑠 and 𝜏 = 3.5s, we have
1000 and 857 periods, respectively. The initial flavor of all
VMs is set to small. To evaluate the performance of the
system under the sudden change in the offered load, five
different scenarios were run tandem, each for 600s. As it can
be seen in Fig. 20 (A), at the first 600s, a low load (Scenario
1) is injected; at t = 600s, the offered load is increased by
applying Scenario 2 with the medium load. At t = 1200s, a
high load (Scenario 3) is injected to the system. After that at
the next two 600s time intervals, the offered load is reduced
to Scenarios 2 and 1, respectively.

0

20

40

60

80

100

120

140

160

180

200

VM 1 VM 2 VM 3 VM 4 VM 5 VM 6 VM 1 VM 2 VM 3 VM 4 VM 5 VM 6

C
P

U
 u

sa
g

e
(%

)

before resizing VMs (1 vCPU) after resizing VMs (2 vCPUs)

Scenario3

pl (f1) pl (f2) pl (f3) pl (f4)

1
 v

C
P

U

2
 v

C
P

U
s

f1: =1, =2

f2: =1, =1.5

f3: =1, =1

f4: =1, =0.5

0
20
40
60
80

100
120
140
160
180
200

f1 f2 f3 f4 f1 f2 f3 f4

A
ve

ra
g

e
C

P
U

 u
sa

g
e

(%
)

before resizing VMs (1 vCPU) after resizing VMs (2 vCPUs)

Scenario3

f1: =1, =2

f2: =1, =1.5

f3: =1, =1

f4: =1, =0.5

2
 v

C
P

U
s

1
 v

C
P

U

0

20

40

60

80

100

120

140

160

180

200

VM 1 VM 2 VM 3 VM 4 VM 5 VM 6 VM 1 VM 2 VM 3 VM 4 VM 5 VM 6

M
em

o
ry

 u
sa

g
e

(%
)

before resizing VMs (2 GB) after resizing VMs (4 GB)

Scenario3

ml (f1) ml (f2) ml (f3) ml (f4)

2
 G

B
 M

em
o

ry

4
 G

B
 M

em
o

ry

f1: =1, =2

f2: =1, =1.5

f3: =1, =1

f4: =1, =0.5

0
20
40
60
80

100
120
140
160
180
200

f1 f2 f3 f4 f1 f2 f3 f4
A

ve
ra

g
e

M
em

o
ry

 u
sa

g
e

(%
)

before resizing VMs (2 GB) after resizing VMs (4 GB)

Scenario3

2
G

B
 M

em
o

ry

f1: =1, =2

f2: =1, =1.5

f3: =1, =1

f4: =1, =0.5

4
 G

B
 M

em
o

ry

0
300
600
900

1200
1500
1800
2100
2400
2700
3000
3300

f1 f2 f3 f4 f1 f2 f3 f4

C
a

ll
 R

a
te

 (
C

P
S

)

before resizing VMs after resizing VMs

Scenario3

Total Calls Admitted by VLB-CAC (Cij) Serviced in SAVI(Wide)

f1: =1, =2 - f2: =1, =1.5 - f3: =1, =1 - f4: =1, =0.5

0

10

20

30

40

50

60

70

80

90

100

f1 f2 f3 f4 f1 f2 f3 f4 f1 f2 f3 f4 f1 f2 f3 f4

C
a

ll
 R

a
te

 (
%

)

Scenario 1 Scenario 2 Scenario 3 Scenario 3

before resizing after resizing

Call Reject by VLB-CAC
f1: =1, =2

f2: =1, =1.5

f3: =1, =1

f4: =1, =0.5

VM4

VM3

VM6

VM5

SAVI

SIP trunk SIP trunk

SIP trunkSIP trunk

S
IP

 t
ru

n
k

S
IP

 t
ru

n
k

S
IP

 t
ru

n
k

VM2

 Path1: 27 Requests Path1: 27 Requests

 Path1: 27 Requests

 Path2: 35 Requests Path2: 35 Requests

 Path2: 35 Requests

VM1

(B)

VM4

VM3

VM6

VM5VM1

SAVI

SIP trunk SIP trunk

SIP trunkSIP trunk

S
IP

 t
ru

n
k

S
IP

 t
ru

n
k

S
IP

 t
ru

n
k

VM2

 Path1: 10 Requests Path1: 10 Requests

 Path2: 15 Requests Path2: 15 Requests

 Path2: 15 Requests Path1: 10 Requests

(A)

Fig. 19. Load distribution in paths among servers 1 through 6 (Wide topology), (A): Before resizing VMs, (B): After resizing VMs

It can be seen that in all scenarios, by using VLB-CAC,
we can achieve a high carried load close to the offered load
(Fig. 20 (A)), while we consume fewer resources compared
to the case when we do not use VLB-CAC (“Without VLB-
CAC” curve in Fig. 20 (B), (C)). Furthermore, in all
scenarios with VLB-CAC, the carried load in case 𝜏 = 3𝑠 is
a little bit more than the case 𝜏 = 3.5s since in the case
𝜏 = 3𝑠, the hold-on time for the new calls is less and the
intervals of VLB-CAC decisions is shorter and consequently

𝑅𝑘𝑙
𝑖𝑗

 and 𝐶𝑖𝑗 are more accurate. However, as shown in Fig. 20

(B), (C), the CPU and memory consumption in case 𝜏 = 3𝑠
is more than that of case 𝜏 = 3.5s.

Moving from Scenario 1 to Scenario 2, the offered load
is increased and the carried load in both cases is also
increased. At t = 1200s, a flash crowd occurs and the
offered load changes to the high load scenario continue for
600 seconds. Flash crowd occurs when a large number of
users simultaneously attempt to make a call. Several factors
affect the occurrence of the flash crowd. For example, on
television voting or on special days like New Year’s Day, a
large number of calls are placed at short intervals imposing
an overload on the network. In the case of “Without VLB-
CAC”, despite the full occupation of the resources (Fig. 20
(B), (C)), the carried load is dropped sharply and the
network suffered the consequences of the overload (Fig. 20
(A)). The overload is so severe that by reducing the offered
load at t = 1800s, the network service rate does not return
to its normal case. This is because the resources are not

completely released due to their participation in message
retransmissions (Fig. 20 (B), (C), the fourth 600 seconds).

As discussed in Section V.B.5, in the case of “With
VLB-CAC” in Scenario 3, since the input load is higher than
the network resources, a throughput very close to the offered
load cannot be achieved (Fig. 20 (A)) even by spending
more resources (Fig. 20 (B), (C)). This issue can be resolved
by increasing the server resources.

We have equipped VLB-CAC with proposed autoscaling
scheme in Section IV.B. Autoscaling enables VLB-CAC to
automatically scale up the SIP server when facing overload
condition and scale down when the condition is normal. At
the start of Scenario 3 (t = 1200s) and in the case of “With
VLB-CAC (τ = 3s)”, call admission rate, �̅�𝑙 and �̅�𝑙 are
respectively 86%, 98% (of 1 vCPU) and 92% (of 2 GB
memory).

In the case of “With VLB-CAC and Autoscaling (τ =
3s)”, the VMs flavor is upgraded from small to medium (2
vCPUs and 4 GB memory). In this way, call admission
rate, �̅�𝑙 and �̅�𝑙 for the new flavor are 100%, 62% (of 2
vCPUs) and 55% (of 4 GB memory), respectively. As a
result, among 3300 call requests, a total number of 3190
(Fig. 20 (A), (τ = 3s)) or 3050 (Fig. 20 (A), (τ = 3.5s)) calls
are serviced from t = 1200s to t = 1800s. As at t =
1800s, the offered load drops, the VMs flavor is changed
from medium to small and the additional resources are
released. In the last two scenarios (from second 1800 to
3000), the carried load can be raised nearly to the offered
load without changing the flavor.

A: Number of serviced requests

(�̅�𝑙)B: Average CPU consumption of VMs

C: Average memory consumption of VMs (�̅�𝑙)

Fig. 20. SIP Network performance over time as the offered varies (Wide topology)

0

500

1000

1500

2000

2500

3000

3500

0 300 600 900 1200 1500 1800 2100 2400 2700 3000

C
a

ll
 R

a
te

 (
C

P
S

)

Time(second)

Offered load Without VLB-CAC
With VLB-CAC (f4, τ=3 sec) With VLB-CAC and Autoscaling (τ=3 sec)
With VLB-CAC (f4, τ=3.5 sec) With VLB-CAC and Autoscaling (τ=3.5 sec)

f4: =1, =0.5

Scenario 1 Scenario 2 Scenario 3 Scenario 2 Scenario 1

0
20
40
60
80

100
120
140
160
180
200

0 300 600 900 1200 1500 1800 2100 2400 2700 3000

A
ve

ra
g

e
C

P
U

 u
sa

g
e

(%
)

Time(second)

Without VLB-CAC With VLB-CAC (f4, τ=3 sec)
With VLB-CAC and Autoscaling (τ=3 sec) With VLB-CAC (f4, τ=3.5 sec)
With VLB-CAC and Autoscaling (τ=3.5 sec)

Scenario 1 Scenario 2 Scenario 3 Scenario 2 Scenario 1

2
 v

C
P

U
s

f4: =1, =0.5

Scaling up
(1 vCPU to 2 vCPUs)

Scaling down
(2 vCPUs to 1 vCPU)

0
20
40
60
80

100
120
140
160
180
200

0 300 600 900 1200 1500 1800 2100 2400 2700 3000

A
ve

ra
g

e
M

em
o

ry
 u

sa
g

e
(%

)

Time(second)

Without VLB-CAC With VLB-CAC (f4, τ=3 sec)

With VLB-CAC and Autoscaling (τ=3 sec) With VLB-CAC (f4, τ=3.5 sec)

With VLB-CAC and Autoscaling (τ=3.5 sec)

Scenario 1 Scenario 2 Scenario 3 Scenario 2 Scenario 1

4
 G

B
 M

em
o

ry

f4: =1, =0.5f4: =1, =0.5
Scaling down

(4 GB Memory to 2 GB Memory)

Scaling up
(2 GB Memory to 4 GB Memory)

7) Effect of node failure
In addition to the flash crowd, another reason causing the

overload of the SIP servers is the sudden failure of the
network nodes and the reduction of network capacity. This
failure may be due to the load imposed by the failed server
on the others in the network. To evaluate the performance of
VLB-CAC when facing this situation, we inject ℂ16 =
1000 calls (offered load) to the Wide topology over a period
of 600 seconds. At t = 200s, VM3 fails and at t = 400s, it
goes back to service again. The results are shown in Fig. 21.

As can be seen in Fig. 21 (A), by t= 200s, an average of
955 requests is serviced with VLB-CAC. When VM3 is
shutdown at t = 200s, there is only one available path
for ℂ16 (path 2). In this condition, VLB-CAC intends to use
most of the server capacity in the existing path without
disturbing consequences of the overload to cope with the
sharp drop of the service rate. That is why �̅�𝑙 and �̅�𝑙
increase approximately to 97% and 92% (Fig. 21 (B), (C)).
However, at t = 200s, the carried load drops to 637 calls
and the average call admission rate reaches 64.5% (Fig. 21
(A)). The use of autoscaler in VLB-CAC provides the
requirements for resizing the VMs in path 2 from small to
medium.

In this way, at t = 200s, the carried load reaches to 955
without any drop. When VM3 returns to the service at t =
400s, the overload situation is passed. The call admission
rate, �̅�𝑙 and �̅�𝑙 for medium flavor reaches approximately
100%, 31% (of 2 vCPUs) and 29% (of 4 GB memory). That
is why the VMs flavor change from medium to small.
Thereafter, all the VMs work with small flavor and can
return to the service rate before the overload (Fig. 21).
However, as already mentioned, in case “Without VLB-
CAC”, there is no way to reach the service rate before the
overload even after passing the overload.

8) Effect of duty cycle 𝜏
In this subsection, we investigate the effect of VLB-

CAC’s duty cycle (𝜏) on the system performance. For this
purpose, we evaluate the call admission rate and resource
utilization of the VLB-CAC in different values of 𝜏 (𝜏 =
2, 4, 6, 8𝑠). As shown in Table IV, when 𝜏 is low (𝜏 = 2𝑠)
the hold-on time for the new calls is low and the interval of

VLB-CAC decision is short and consequently, 𝑅𝑘𝑙
𝑖𝑗

 and 𝐶𝑖𝑗

are more accurate which causes a higher call admission rate.
However, as shown in Table IV, the average CPU and
memory consumption in case τ = 2s are more than those of
the others cases.

TABLE IV. COMPARISON OF THE RESULTS AS THE 𝜏 IS VARIED WITH

VLB-CAC (SCENARIO 1 OF WIDE TOPOLOGY)
 f2 f4

𝜏 (𝑠) 2 4 6 8 2 4 6 8

Call admission rate (%) ~ 41 37 21 14 100 96 80 74

Average CPU usage (%) ~ 22 20 17 13 38 35 32 27

Average memory usage (%) ~ 19 17 15 13 31 28 24 20

A: Number of serviced requests

B: Average CPU consumption of VMs (�̅�𝑙)

C: Average memory consumption of VMs (�̅�𝑙 (

Fig. 21. Network performance over time in case of VM3 failure

C. Comparison with Other Algorithms

 In this section, we assess the performance of the
algorithm implemented on VLB-CAC (Section IV.A)
against [22] and [4] (the configuration is similar to that of
Section V.A). In [4], TLWL algorithm routes a new call
request to the server with the least load using a load
balancer. On the other hand, [22] employs a mixed-integer
nonlinear optimization on three levels to allocate resources
with respect to the cloud platform input requests (here, we

consider medium level which is referred to as 𝑅𝐴𝑃𝑐
𝑇2).

“Algorithm execution time”, “resource consumption for
running the algorithm as the cost of the algorithm” and
“throughput as the algorithm output” are considered for the
assessment. As Table V shows, VLB-CAC is able to achieve
a better throughput compared with the other two algorithms,
which happens as a result of the linearity of the model.
Moreover, linearity allows lower execution time and
resource consumption.

TABLE V. VLB-CAC PERFORMANCE COMPARISON WITH OTHER ALGORITHMS

The number of servers and incoming requests 𝑛 = 6 𝑎𝑛𝑑 ∑ ∑ ℂ𝑖𝑗𝑛
𝑗=1

𝑛
𝑖=1 = 3,300 𝑛 = 12 𝑎𝑛𝑑 ∑ ∑ ℂ𝑖𝑗𝑛

𝑗=1
𝑛
𝑖=1 = 6,600 𝑛 = 24 𝑎𝑛𝑑 ∑ ∑ ℂ𝑖𝑗𝑛

𝑗=1
𝑛
𝑖=1 = 13,200

Algorithms VLB-CAC
𝑅𝐴𝑃𝑐

𝑇2
[22]

TLWL
[4]

VLB-CAC
𝑅𝐴𝑃𝑐

𝑇2
[22]

TLWL
[4]

VLB-CAC
𝑅𝐴𝑃𝑐

𝑇2
[22]

TLWL
[4]

Algorithm Execution Time (s) ~ 0.42 0.49 3.24 0.48 4.89 32.68 0.54 7.15 120.7

CPU Consumption (%) ~ 3 8 14 4 15 19 5 26 38

Memory Consumption (%) ~ 1 7 10 2 13 15 3 24 28

Throughput (req/s) ~ 2,838 2,475 2,244 5,676 4,950 4,488 11,352 10,032 8,976

0

200

400

600

800

1000

1200

0 100 200 300 400 500 600

C
a

ll
 R

a
te

 (
C

P
S

)

Time(second)

Offered load Without VLB-CAC

With VLB-CAC (f4, τ=3 sec) With VLB-CAC and Autoscaling (τ=3 sec)

f4: =1, =0.5

6 VMs VMs 6 VMs

0
20
40
60
80

100
120
140
160
180
200

0 100 200 300 400 500 600

A
ve

ra
g

e
C

P
U

 u
sa

g
e

(%
)

Time(second)

Without VLB-CAC
With VLB-CAC (f4, τ=3 sec)
With VLB-CAC and Autoscaling (τ=3 sec)

2
 v

C
P

U
s

f4: =1, =0.5 Scaling up
(1 vCPU to 2 vCPUs)

Scaling down
(2 vCPUs to 1 vCPU)

6 VMs VMs 6 VMs

0
20
40
60
80

100
120
140
160
180
200

0 100 200 300 400 500 600

A
ve

ra
g

e
M

em
o

ry
 u

sa
g

e
(%

)

Time(second)

Without VLB-CAC
With VLB-CAC (f4, τ=3 sec)
With VLB-CAC and Autoscaling (τ=3 sec)

4
 G

B
 M

em
o

ry

f4: =1, =0.5 Scaling down
(4 GB Memory to 2 GB Memory)

Scaling up
(2 GB Memory to 4 GB Memory)

6 VMs VMs 6 VMs

As the number of servers and requests increase, VLB-

CAC is able to demonstrate better scalability. By increasing

servers, the number of variables in 𝑅𝐴𝑃𝑐
𝑇2 increase rapidly,

which in turn demands more memory and processor. It
should also be noted that LP can be solved with great
efficiency in polynomial time by interior point methods, yet
MINLPs are NP-hard (see [25, 26]).

To compare our algorithm with TLWL, note that TLWL
requires preserving the information from the received
request for load estimation (and the whole signaling traffic
of SIP network passes through the load balancer). Hence, the
required resources for TLWL would burgeon by increasing
the number of requests. As mentioned in [4], TLWL offers
scalable solution for a maximum of 10 servers.

VI. CONCLUSION AND FUTURE WORK

In this paper, we proved that the problem of overload

control in SIP network with 𝑛 > 2 servers and in limited

resources is NP-hard. We introduced a Virtual Load-

Balanced Call Admission Controller (VLB-CAC) based on

a heuristic mathematical model to determine optimal

resource allocation in such a way that the number of

requested local and outbound calls are maximized regarding

the limited resources of the SIP servers. Specifically, we

proposed a linear optimization model to maximize call

admission rates along with the optimal allocation of CPU

and memory resources of the SIP servers. The under-study

SIP network was implemented in the VMs through the use

of virtualization capacity in the SAVI testbed and VLB-

CAC was equipped with an autoscaling method to overcome

the resource limitations. We developed the various

autoscaling policies to deal with the SIP network overload.

An assessment of the analytical and experimental results in

various scenarios demonstrates the efficiency of the

proposed method. As future work, we intend to make

effective use of SDNs (Software Defined Networks) for

controlling overload in SIP networks. We also plan to

implement VLB-CAC using the OpenFlow protocol.

REFERENCES

[1] Nemati, H.; Singhvi, A.; Kara, N.; El Barachi, M., "Adaptive SLA-
based elasticity management algorithms for a virtualized IP
multimedia subsystem," in Globecom Workshops, 2014.

[2] Carella, G.; Corici, M.; Crosta, P.; Comi, P.; Bohnert, T.M.; Corici,
A.A.; Vingarzan, D.; Magedanz, T., "Cloudified IP Multimedia
Subsystem (IMS) for Network Function Virtualization (NFV)-based
architectures," in ISCC, 2014.

[3] M. Homayouni, H. Nemati, V. Azhari, and A. Akbari, "Controlling
Overload in SIP Proxies: An Adaptive Window Based Approach
Using No Explicit Feedback," GLOBECOM, pp. 1-5, 2010.

[4] J. Hongbo, A. Iyengar, E. Nahum, W. Segmuller, A. N. Tantawi, and
C. P. Wright, "Design, Implementation, and Performance of a Load
Balancer for SIP Server Clusters," Networking, IEEE/ACM
Transactions on, vol. 20, pp. 1190-1202, 2012.

[5] L. De Cicco, "Local SIP Overload Control: Controller Design and
Optimization by Extremum Seeking," Control of Network Systems,
IEEE Transactions on, vol. PP, pp. 1-1, 2015.

[6] S. V. Azhari, M. Homayouni, H. Nemati, J. Enayatizadeh, and A.
Akbari, "Overload control in SIP networks using no explicit
feedback: A window based approach," Comput. Commun., vol. 35,
pp. 1472-1483, 7/1/ 2012.

[7] V. Hilt and I. Widjaja, "Controlling overload in networks of SIP
servers," ICNP 2008, pp. 83-93.

[8] Y. Hong, C. Huang, and J. Yan, "Modeling and simulation of SIP
tandem server with finite buffer," ACM Trans. Model. Comput.
Simul, vol. 21, pp. 1-27, 2011.

[9] J. Liao, J. Wang, T. Li, J. Wang, J. Wang, and X. Zhu, "A distributed
end-to-end overload control mechanism for networks of SIP servers,"
Computer Networks, vol. 56, pp. 2847-2868, 8/16/ 2012.

[10] Ahmadreza Montazerolghaem, Mohammad Hossein Yaghmaee
Moghaddam, Farzad Tashtarian, "Overload Control in SIP

Networks: A Heuristic Approach based on Mathematical
Optimization" in proceeding of IEEE Globecom 2015, 6-10 Dec.
2015.

[11] Joon-Myung Kang; Bannazadeh, H.; Leon-Garcia, A., "SAVI testbed:
Control and management of converged virtual ICT resources," in
IFIP/IEEE, 2013.

[12] A. Montazerolghaem, S. K. Shekofteh, G. Khojaste, M.
Naghibzadeh, and M. H. Yaghmaee-M, "A novel load scheduling for
session initiation protocol networks," ICCKE 2014, pp. 509-514.

[13] K. Singh and H. Schulzrinne, "Failover, load sharing and server
architecture in SIP telephony," Computer Communication, vol. 30,
pp. 927-942, 3/8/ 2007.

[14] R. G. Garroppo, S. Giordano, S. Niccolini, and S. Spagna, "A
Prediction-Based Overload Control Algorithm for SIP Servers,"
IEEE Transactions on Network and Service Management, vol. 8, pp.
39-51, 2011.

[15] J. Wang, J. Liao, T. Li, J. Wang, J. Wang, and Q. Qi, "Probe-based
end-to-end overload control for networks of SIP servers," Journal of
Network and Computer Applications, vol. 41, pp. 114-125, 2014.

[16] G. Mishra, S. Dharmaraja, and S. Kar, "Reducing session
establishment delay using timed out packets in SIP signaling
network," International Journal of Communication Systems, 2014.

[17] C. Shen, H. Schulzrinne, and E. Nahum, "Session Initiation Protocol
(SIP) Server Overload Control: Design and Evaluation," in
Principles, Systems and Applications of IP Telecommunications,
2008, pp. 149-173.

[18] A. Abdelal and W. Matragi, "Signal-Based Overload Control for SIP
Servers," CCNC 2010, pp. 1-7.

[19] E. Noel and C. R. Johnson, "Novel overload controls for SIP
networks," ITC 2009, pp. 1-8.

[20] H. Yang, H. Changcheng, and J. Yan, "Mitigating SIP Overload
Using a Control-Theoretic Approach," GLOBECOM 2010, pp. 1-5.

[21] C. Shen and H. Schulzrinne, "On TCP-based SIP server overload
control," presented at the Principles, Systems and Applications of IP
Telecommunications, Munich, Germany, 2010.

[22] Addis, B.; Ardagna, D.; Panicucci, B.; Squillante, M.S.; Li Zhang, "A
Hierarchical Approach for the Resource Management of Very Large
Cloud Platforms," in Dependable and Secure Computing, IEEE
Transactions on , vol.10, no.5, pp.253-272, Sept.-Oct. 2013.

[23] Chun-Cheng Lin; Hui-Hsin Chin; Der-Jiunn Deng, "Dynamic
Multiservice Load Balancing in Cloud-Based Multimedia System," in
Systems Journal, IEEE , vol.8, no.1, pp.225-234, March 2014.

[24] Tchernykh, A.; Cortes-Mendoza, J.M.; Pecero, J.E.; Bouvry, P.;
Kliazovich, D., "Adaptive energy efficient distributed VoIP load
balancing in federated cloud infrastructure," in Cloud Networking
(CloudNet), 2014 IEEE 3rd International Conference on , 2014.

[25] S. A. Vavasis, "Nonlinear Optimization: Complexity Issues". London,
U.K.: Oxford Univ. Press, 1991.

[26] J. Lee and S. Leyffer, "Mixed Integer Nonlinear Programming", IMA
Volume in Mathematics and Its Applications. New York, NY, USA:
Springer-Verlag, 2011.

[27] Nikravesh, A.Y.; Ajila, S.A.; Chung-Horng Lung, "Measuring
Prediction Sensitivity of a Cloud Auto-scaling System," in
COMPSACW, 2014.

[28] R. G. Garroppo, S. Giordano, M. Pagano, and G. Procissi, "On traffic
prediction for resource allocation: a Chebyshev bound based
allocation scheme," Comput. Commun., vol. 31, no. 16, pp. 3741-
3751, 2008.

[29] S. Haykin, "Adaptive Filter Theory". Prentice-Hall, 1991.
[30] Elastix, “An open source SIP server,” 2016 [Online]. Available:

http://www.elastix.org/index.php/en/
[31] SIPp, “A free open source traffic generator for the SIP protocol,”

2016 [Online]. Available: http://sipp.sourceforge.net/
[32] PuLP, “An LP modeller,” 2016 [Online]. Available:

https://pypi.python.org/pypi/PuLP
[33] OProfile, “A system profiler for Linux,” 2016 [Online]. Available:

http://oprofile.sourceforge.net/
[34] Psutil, “python system and process utilities” 2016 [Online].

Available: https://pypi.python.org/pypi/psutil
[35] Kamailio, “An open source SIP proxy” 2016 [Online]. Available:

http://www.kamailio.org/w

Ahmadreza Montazerolghaem
received the B.Sc. degree in Information

Technology from the computer

department, Sadjad University of

Technology and M.Sc. degree in

computer engineering from the computer

department, Ferdowsi University of

Mashhad (FUM), Iran, in 2010 and

2013, respectively. Currently, he is a Ph.D. candidate in

computer engineering at computer department, FUM. He is

an IEEE Student member and a member of IP-PBX type

approval lab in FUM. He is also a member of National

Elites Foundation (Society of prominent students of the

country). His research interests are in Software Defined

Networking, Network Function Virtualization, Voice over

IP, and Optimization.

Mohammad Hossein Yaghmaee

Moghaddam received his B.S.

degree in communication

engineering from Sharif University

of Technology, Tehran, Iran in

1993, and M.S. degree in

communication engineering from

Tehran Polytechnic (Amirkabir)

University of Technology in 1995.

He received his Ph.D degree in

communication engineering from Tehran Polytechnic

(Amirkabir) University of Technology in 2000. He has been

a computer network engineer with several networking

projects in Iran Telecommunication Research Center

(ITRC) since 1992. November 1998 to July1999, he was

with Network Technology Group (NTG), C&C Media

research labs., NEC corporation, Tokyo, Japan, as visiting

research scholar. September 2007 to August 2008, he was

with the Lane Department of Computer Science and

Electrical Engineering, West Virginia University,

Morgantown, USA as the visiting associate professor. July

2015 to September 2016, he was with the electrical and

computer engineering department of the University of

Toronto (UoT) as the visiting professor. Currently, he is a

full professor at the Computer Engineering Department,

Ferdowsi University of Mashhad (FUM). His research

interests are in Smart Grid, Computer and Communication

Networks, Quality of Services (QoS), Software Defined

Networking (SDN) and Network Function Virtualization

(NFV). He is an IEEE Senior member and head of the IP-

PBX type approval lab in the Ferdowsi University of

Mashhad. He is the author of some books on Smart Grid,

TCP/IP and Smart City in Persian language.

Alberto Leon-Garcia received the

B.S., M.S., and Ph.D. degrees in

electrical engineering from the

University of Southern California,

Los Angeles, CA, USA, in 1973,

1974, and 1976, respectively. He was

founder and CTO of AcceLight

Networks, Ottawa, ON, Canada, from

1999 to 2002, which developed an

all-optical fabric multiterabit, switch. He is currently a

Professor in Electrical and Computer Engineering at the

University of Toronto, ON, Canada. He holds a Canada

Research Chair in Autonomic Service Architecture. He

holds several patents and has published extensively in the

areas of switch architecture and traffic management. His

research team is currently developing a network testbed that

will enable at-scale experimentation in new network

protocols and distributed applications. He is recognized as

an innovator in networking education. In 1986, led the

development of the University of Toronto-Northern

Telecom Network Engineering Program. He has also led in

1997 the development of the Master of Engineering in

Telecommunications program, and the communications and

networking options in the undergraduate computer

engineering program. He is the author of the leading

textbooks Probability and Random Processes for Electrical

Engineering and Communication Networks: Fundamental

Concepts and Key Architecture. His current research

interests include application- oriented networking and

autonomic resources management with a focus on enabling

pervasive smart infrastructure. Prof. Leon-Garcia is a

Fellow of the Engineering Institute of Canada. He received

the 2006 Thomas Eadie Medal from the Royal Society of

Canada and the 2010 IEEE Canada A. G. L. McNaughton

Gold Medal for his contributions to the area of

communications.

Mahmoud Naghibzadeh has

received the MS and PhD degrees in

Computer Science and Computer

Engineering, respectively, from

University of Southern California,

USA. Now, he is a full professor at

the Deparment of Computer

Engineering, Ferdowsi University of

Mashhad, Mashhad, Iran. In 1991 he

was a visitng professor at University of California, Irvine,

USA, and in 3003-2004 he was a visitng professor at

Monash University, Australia. He is the director of

Knowledge Engineering Reasearch Group (KERG)

laboratory and his research interests include the schedulig

aspects of real-time systems, Grid, Cloud, Multiprocessors,

Multicores, and GPGPUs. Besides, he is also interested in

Bioinfomatics computer algorithms, especially protein

structures and protein-preotein interactions. He has

published numerous papers in international journals and

conference proceedings as well as eight books in the field of

Computer Science and Engineering. He has been the

general chair of two international computer conferences and

the technical chair of many others. Also, he is the reviewer

of many journals and member of many computer societies,

especially a senior member of the IEEE. He is the recipiant

of many awards including MS and PhD study scholarship

and outstanding professor award. Currently, he is the chief

editor of the Computer and Knowledge Engineering (CKE)

journal.

Farzad Tashtarian received the B.S.

degree in Computer Engineering from

Islamic Azad University Mashhad

Branch, Iran in 2005, and the M.S.

degree in Information Technology

from Islamic Azad University Qazvin

Branch, Iran in 2007. He received his

Ph.D. degree in Computer Engineering

at Ferdowsi university of Mashhad,

Mashhad, Iran in 2013. Currently, he is an assistant

professor and the Head of IT Department at IAUM. His

research interests include wireless sensor networks, mobile

communications, mathematical modeling, optimization, and

distributed control.

