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Abstract— Network functions virtualization provides 

opportunities to design, deploy, and manage networking 

services. It utilizes Cloud computing virtualization services 

that run on high-volume servers, switches and storage 

hardware to virtualize network functions. Virtualization 

techniques can be used in IP Multimedia Subsystem (IMS) 

cloud computing to develop different networking functions 

(e.g. load balancing and call admission control). IMS network 

signaling happens through Session Initiation Protocol (SIP). 

An open issue is the control of overload that occurs when an 

SIP server lacks sufficient CPU and memory resources to 

process all messages. This paper proposes a virtual load 

balanced call admission controller (VLB-CAC) for the cloud-

hosted SIP servers. VLB-CAC determines the optimal “call 

admission rates” and “signaling paths” for admitted calls 

along with the optimal allocation of CPU and memory 

resources of the SIP servers. This optimal solution is derived 

through a new linear programming model. This model 

requires some critical information of SIP servers as input. 

Further, VLB-CAC is equipped with an autoscaler to 

overcome resource limitations. The proposed scheme is 

implemented in SAVI (Smart Applications on Virtual 

Infrastructure) which serves as a virtual testbed. An 

assessment of the numerical and experimental results 

demonstrates the efficiency of the proposed work. 

Keywords—SIP servers, Resource allocation, Cloud 

computing; Multi-objective optimization; Network function 

virtualization; Overload control; Voice over IP (VoIP) 

I.  INTRODUCTION 

IP Multimedia Subsystem (IMS) has been introduced by 
3rd Generation Partnership Project (3GPP) standards to 
enable real-time communication services such as Voice over 
IP (VoIP), video communication, IP-based messaging and 
other new innovative multimedia communication services, 
on a full IP-based core network over any access technology.  

IMS Cloud computing has been introduced to support 
high-quality multimedia applications in the cloud 
computing. Network Function Virtualization (NFV) and 
Cloud computing could be used to improve the scalability 
and elasticity of IMS deployments [1]. The work given in [2] 
introduces a set of three software architectures for efficient 
virtualization of IMS in different operating environments. A 
management architecture is used to simplify the deployment 
and runtime orchestration of such a virtual service on top of 
a Cloud infrastructure. 

Call Session Control Function (CSCF) is the main part of 
IMS which is used to setup, maintain and release call 
sessions. The main protocol used for managing media 
sessions in CSCF is Session Initiation Protocol (SIP). SIP is 
an application layer signaling protocol for initiating, 
modifying, and tearing down multimedia sessions [3]. SIP 
uses UDP or TCP packets for different operations such as 

device registration and call setup/teardown. Call setup 
message or “INVITE” (briefly referred to as Call Request) is 
the most important request message, given that its 
transaction has a maximum process load on CPU server [4, 
5]. Once a session is created, media are exchanged without 
passing through the servers. Hence, only the signaling 
messages would impose a load on the server. The SIP 
overload occurs when SIP server lacks enough resources 
such as CPU and memory [8], to process all messages [6, 7]. 
Considering the increasing application of this protocol, SIP 
serves should be equipped with overload control.  

Cloud-hosted SIP servers offer flexibility, affordability, 
and reliability for communication requirements. Unlike 
traditional SIP servers, cloud-hosted SIP servers use the 
benefits of Cloud computing and eliminate the expensive 
setup and the large capital investment on hardware. Cloud-
hosted SIP servers can use the dynamic resource 
provisioning and autoscaling features of the cloud 
computing to provide scalability, mobility, and reliability for 
the customers. Each SIP server can be implemented in a 
Virtual Machine (VM) in the cloud environment. As each 
VM has a predefined resource, the total capacity of SIP 
servers decreases when an overload situation occurs. This is 
because most of its processing resources are being used for 
rejecting or processing the messages that would be 
ultimately rejected [9]. SIP servers provide reliability by 
retransmission of the messages with an unconfirmed 
delivery [9] when functioning on unreliable transmission 
protocols such as UDP [8]. In this regard, a large set of 
retransmission timers are employed [6, 8]. Although this 
mechanism is useful in case of unreliable links, under 
overload conditions, it imposes high loads on the server and 
decreases efficiency [8]. This is because the redundant 
retransmissions and manipulation of the mentioned timers 
increase CPU and memory occupation and worsen server 
overload. On the other hand, the base mechanism of SIP 
protocol which lacks the required efficiency for overload 
control would be activated [6]. In this case, the server rejects 
new call request messages by issuing “503 service 
unavailable” message once reaching the maximum capacity 
(whose cost is comparable to providing a service). In 
addition, for servers configured statefully (as the dominant 
configuration), some state information is stored for each 
transaction. Having no supervision over the number of 
established calls, a server might engage its entire memory 
which degrades the performance. Therefore, to obtain 
maximum capacity and prevent overload occurrence, it is 
necessary to make optimum use of resources and prevent its 
waste.  

The aim of this paper is to propose a method for optimal 
allocation of SIP servers’ resources to the admitted calls. To 
this aim, we extend our recent work [10] by utilizing the 



 
benefits of NFV and the cloud computing to propose an 
optimized VLB-CAC. VLB-CAC runs on a virtual machine 
on the cloud while communicating with all SIP servers. 
Meanwhile, it collects statistics about the remaining 
resources of SIP servers. VLB-CAC is responsible to find 
the optimal call acceptance rate for each SIP server by 
solving an optimization problem which prevents overload.  
VLB-CAC uses the autoscaling capability of cloud 
computing to overcome resource limitations, using the cloud 
capacities in resources virtualization. The main contributions 
of this work are summarized as follows: 

(1) We develop an optimized virtual load balancer and 
admission controller for SIP servers by utilizing the 
virtualization services in cloud computing;  

(2) We prove that the overload control problem for n 
servers with limited resource is NP-hard; 

(3) We propose a mathematical model which optimizes 
resource usage and maximizes throughput;   

(4) We propose a novel autoscaling scheme at VM level, 
which sufficiently scales the resources, while attempting to 
maximize call admission rate; 

(5) We implemented the proposed work on a real two-
tier cloud computing [11]. 

The rest of the paper is organized as follows: in Section 
II, we provide an overview of the related works. System 
model and problem formulations is given in Section III. 
Section IV presents the proposed method. The performance 
evaluation, conclusion and future work are given Section VI. 

II. RELATED WORK 

There are different approaches for improving SIP 
performance under overload conditions. These approaches 
are classified as below: 

- Load balancing: Distribution of new input traffic over 
the SIP servers based on their accessible capacity using a 
“Load Balancer” [4, 12, and 13] is called load balancing. 
This approach reduces the probability of overload. As the 
whole signaling traffic of SIP network passes through load 
balancer, performance is reduced. As a result, the load 
balancer itself is threatened by the risk of overload. 
Therefore, its performance needs to be enhanced by the 
available techniques. 

- Overload control: These methods are divided into local 
and distributed methods. In local methods, the overloaded 
server has an independent control over its resource usage 
without the need for interaction with other network servers. 
The criteria for identifying the overload in some of these 
methods are queue length and CPU usage level. According 
to these criteria, a set of thresholds is defined, exceeding 
which makes the server enter overload stage so that it starts 
to reject the incoming calls. The main drawback of this 
method is that the cost of call rejection cannot be ignored, 
and when dealing with heavy overloads, the server must use 
its resources for rejecting the excess calls [5]. On the other 
hand, depending on whether upstream servers detect 
overload or informed via the overloaded downstream 
servers, distributed methods are categorized into explicit and 
implicit methods [7]. Explicit methods are classified into 
rate-based, loss-based, signal-based, window-based, and 
on/off control techniques [14]. Within the rate-based 
techniques, the downstream server controls the delivery rate 
from upstream servers [9, 15]. In the loss-based technique, 
downstream server frequently measures its current load and 
accordingly requests the upstream servers to reduce their 
transmitted load [16]. In window-based methods, unless 
there are empty slots in upstream server window, the load is 

not transmitted to the downstream server. The main issue of 
the later methods is window size adjustment, which can be 
achieved using the feedback from the downstream server [3, 
6, and 17]. In signal-based methods, the upstream server 
reduces its transmission rate when receiving “503 Service 
Unavailable” message in order to prevent further 
transmission of 503 messages from the downstream server 
[18]. Unlike signal-based method which do not employ 
“Retry-After” header, a given server can either hold off or 
on its received load within the on/off control method by 
transmission of Retry-After feedback [19]. As opposed to 
explicit methods, the absence of responses or the loss of 
packets is used to detect overload in implicit methods. 

- Retransmission rate variation: These methods review 
retransmission mechanism of SIP by studying servers’ buffer 
size [8, 20]. By limiting the dedicated memory of the server, 
admitting over-capacity calls can be avoided. This policy 
loses efficiency once the call rate rises, as the server 
processor is forced to analyze the messages to recognize 
their content. Therefore, the server saturates, (typically) 
under higher loads. 

- Exploiting TCP flow control: These methods exploit 
the mechanism of preventing congestion for the purpose of 
overload control [21]. The setback of such methods is 
scalability and high delay. Further, congestion in TCP occurs 
due to limited bandwidth, whereas overload in SIP happens 
due to limited processing capacity of servers’ CPU [8].  

As mentioned earlier, cloud-hosted SIP servers use the 
benefits of cloud computing. Moreover, they eliminate the 
expensive setup and large capital investment on hardware. 
Therefore, SIP servers can be implemented as VMs in the 
cloud. Resource management and call admission control are 
important issues in cloud computing. In [22], a distributed 
hierarchical framework based on a mixed-integer nonlinear 
optimization of resource management across multiple 
timescales is proposed. The main goal is to set resource 
allocation policies for virtualized cloud environments that 
satisfy performance and availability guarantees and 
minimize energy costs in very large cloud service centers.  
In [23] a centralized hierarchical cloud-based multimedia 
system (CMS) has been considered. The CMS consists of a 
resource manager, cluster heads, and server clusters in which 
each server cluster only handles a specific type of 
multimedia task, and each client requests a different type of 
multimedia service at a different time. The problem has been 
modeled as an integer linear programming and has been 
solved by an efficient genetic algorithm. The authors in [24] 
formulate and discuss load balancing problem addressing 
VoIP in the cloud computing federation and propose a new 
distributed adaptive power aware load balancing algorithm 
for VoIP cloud. 

Based on the above-mentioned points, the disadvantages 
of the present overload control approaches are: First, 
reliance merely on the local call rejection reduces 
throughput. Second, for the majority of explicit feedback-
based methods, the continuous revision of the status and 
feedback calculation imposes complexity and overhead. 
Third is the delay in feedback arrival to upstream, which 
results in instability. Nonetheless, the precision of overload 
detection is higher compared to implicit methods. Therefore, 
overload detection, feedback generation, and running the 
overload control algorithm incurs CPU and memory usage 
costs and affects server throughput. To the best of our 
knowledge, autoscaling capability of the cloud computing 
has not been employed to scale up or down the VMs in case 
of sudden changes in offered load in IMS cloud computing. 



 

III. SYSTEM MODEL AND PROBLEM FORMULATION 

The architecture of the SIP protocol consists of User 
Agent and SIP Server. A User Agent Client creates a SIP 
request and sends it to a User Agent Server. The request 
traverses through one or more SIP servers in a SIP network. 
The main purpose of a SIP server is to route each request to 
its destination [9]. Since the requests are routed hub by hub, 
and generally there are several servers from source to 
destination (which implies various path between the nodes), 
factoring in the routing request from the SIPs would be 
beneficial to lowering resource for servers and avoiding 
loops. The response traces back the path that the request has 
been taken. An “INVITE” request together with a “BYE” 
request initialize and terminate the call, respectively. As SIP 
is call-oriented, it can only reject the “INVITE” requests by 
the SIP server if unwilling (or unable) to forward the 
requests. The user is connected to the server located closest 
to it. The first server to which the call arrives, decides about 
the admission of the call. Moreover, the middle servers route 
the call to the last server (or the target server).  

Consider a two-tier cloud consisting of one core that 
represents a cloud with large number of computing 
resources, typically a large data center and some smart edges 
that represent a cloud with a limited set of computing 
resources, typically a small data center. The smart edges are 
geographically close to end users thus resulting in low 
network latency. To facilitate the movement of computation 
tasks, the core and smart edge(s) are connected by a fast 
network. A virtualized network function, or VNF, may 
consist of one or more VMs running different software and 
processes, on top of standard high-volume servers, switches 
and storage, or cloud computing infrastructure.  

As shown in Fig. 1, the system in general consists of a 
set of n SIP servers located at different VMs with limited 
processing and memory resources. The VMs are employed 
instead of having custom hardware appliances for each 
network function. At each smart edge, there are one or more 
SIP servers implemented in a VM. At the core of the cloud, 
there is a Virtual Load Balanced Call Admission Controller 
(VLB-CAC), which acts as the central controller, collects 
information about the available resources and the offered 
load of all SIP servers, and through running an optimization 
problem, finds the optimal resource allocation and 
broadcasts the results to all SIP servers. Each server uses its 
resources to initiate a session between the local users and 
users in other domains. In this paper, it is assumed that the 
binary symmetric matrix 𝐿𝑖𝑗  , 𝑖, 𝑗 ∈ {1, … , 𝑛} represents the 

topology of the SIP server network. In this matrix, 𝐿𝑖𝑗 = 1 

implies the presence of a communication link via SIP trunk 
between servers 𝑖 and 𝑗, while 𝐿𝑖𝑗 = 0 indicates that the two 

given SIP servers are not adjacent through a direct SIP trunk. 
Note that the main diagonal elements of this matrix are all 
zeros. SIP trunk is a service for making a connection 
between the VoIP network devices that work with SIP 
protocol. In fact, a SIP trunk is a virtual connection over the 
public internet or a Virtual Private Network (VPN) that 
connects VoIP equipment. Assume a two-dimensional array 

ℂ with the size of (𝑛 × 𝑛), where ℂ𝑖𝑖  denotes the number of 
local calls in server 𝑖 (where both caller and callee are 

registered on the same server) and ℂ𝑖𝑗  shows the number of 

outbound calls from server 𝑖 to server 𝑗. Let 𝐶𝑖𝑗 be the 
optimal number of admitted calls established from server 𝑖 to 

server 𝑗 where 𝐶𝑖𝑗 ≤ ℂ𝑖𝑗 . Regarding the optimal value 

of 𝐶𝑖𝑗, 𝑅𝑘𝑙
𝑖𝑗

 shows the number of calls from origin 𝑖 to 

destination 𝑗, which must be relayed from server 𝑘 to server 𝑙 
(see Fig. 2). 
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Fig. 1. A simple model of the proposed system in a two-tire cloud 
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Fig. 2. Transmitting calls from the origin 𝑖 to the destination 𝑗 assisted by 
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Fig. 3. The duty cycle of VLB-CAC  

 
To perform its operation, each server 𝑖 relies on its 

remaining CPU and memory resources, which are denoted as 
𝑃𝑖  and 𝑀𝑖, respectively. The duty cycle of VLB-CAC is 
depicted in Fig. 3. At the beginning of each time slot 𝜏, all 
servers transmit how much the resources are remaining and 
the number of new local and outbound requests to the VLB-
CAC through UDP packets. This critical information is 
gathered in every 𝑡𝑔 units of time. By using the linear 

program (LP) model proposed in the next part of this paper, 

VLB-CAC determines the optimal values of 𝐶𝑖𝑗 and 𝑅𝑘𝑙
𝑖𝑗

 in 

𝑡𝑐  and then broadcasts the results to the servers in 𝑡𝑛 (Fig. 
3).  After that, VLB-CAC enters into the idle state and waits 
 𝑡𝑖𝑑𝑙𝑒  units of time for the next time slot 𝜏. In fact, a new 
incoming call during 𝜏 should be entered into the hold-on 
state by the SIP server until the next 𝜏. Compared to the 
duration of a call, this time, is negligible which can also be 
shortened by reducing 𝜏.  

IV. VLB-CAC 

In this section, we propose to design the VLB-CAC 

controller in a way to optimally determine  𝐶𝑖𝑗 and 𝑅𝑘𝑙
𝑖𝑗

, 

based on a new linear programming model. Prior to 
proposing the model, we prove that the problem of overload 
controlling in SIP networks is in the form of a mixed integer 
linear program and is, therefore, NP-hard. 

Theorem 1: Overload control problem for a set of 𝑛 > 2 
SIP servers with limited CPU and memory resources is in 
the form of a mixed integer nonlinear program (MINLP).  

Proof: Let 𝐵𝑘𝑙
𝑖𝑗

 be a binary variable. Assume that 𝐵𝑘𝑙
𝑖𝑗

= 1 

denotes that a call request from server 𝑖 to server 𝑗 could be 

transmitted from servers 𝑘 to server 𝑙 and 𝐵𝑘𝑙
𝑖𝑗

= 0 denotes 

that server 𝑘 and 𝑙 do not participate in transferring request 
from server 𝑖 to server 𝑗. Given the limited resources in the 

servers, the optimal values of 𝐵𝑘𝑙
𝑖𝑗

 , 𝐶𝑖𝑗, and 𝑅𝑘𝑙
𝑖𝑗

 could be 

obtained through the following MINLP model: 

 



 

 𝑚𝑎𝑥 ∑ ∑ 𝐶𝑖𝑗𝑛
𝑗=1

𝑛
𝑖=1   (1) 

Subject to:   
 𝐶𝑖𝑗 ≤ ℂ𝑖𝑗  ,    ∀𝑖, 𝑗 (I) 
 ∑ 𝐵𝑘𝑙

𝑖𝑗
𝑅𝑘𝑙

𝑖𝑗𝑛
𝑘=1 = ∑ 𝐵𝑙𝑒

𝑖𝑗
𝑅𝑙𝑒

𝑖𝑗𝑛
𝑒=1  ,    ∀𝑖, 𝑗, 𝑙, 𝑖 ≠ 𝑙 , 𝑗 ≠ 𝑙 (II)  

 ∑ 𝐵𝑘𝑙
𝑖𝑗

𝑅𝑘𝑙
𝑖𝑙 = 𝐶𝑖𝑙𝑛

𝑘=1  ,     ∀𝑖, 𝑗, 𝑙, 𝑖 ≠ 𝑙 (III)  

 ∑ 𝐵𝑙𝑒
𝑖𝑗

𝑅𝑙𝑒
𝑙𝑗𝑛

𝑒=1 = 𝐶𝑙𝑗  ,      ∀𝑖, 𝑙, 𝑗, 𝑗 ≠ 𝑙 (IV)  

 𝑅𝑘𝑙
𝑖𝑖 = 0 ,  ∀𝑖, 𝑘, 𝑙 (V)  

 𝑅𝑘𝑖
𝑖𝑗

= 0 ,  ∀𝑖, 𝑗, 𝑘 (VI)  

 𝐵𝑘𝑙
𝑖𝑗

− 𝐿𝑘𝑙 ≤ 0 ,  ∀𝑖, 𝑗, 𝑘 (VII)  

 𝛼1𝐶𝑙𝑙 + 𝛼2(∑ ∑ ∑ (𝐵𝑙𝑘
𝑖𝑗

𝑅𝑙𝑘
𝑖𝑗𝑛

𝑘=1
𝑛
𝑗=1

𝑛
𝑖=1 + 𝐵𝑘𝑙

𝑖𝑗
𝑅𝑘𝑙

𝑖𝑗
)) ≤ 𝑃𝑙 ,  ∀l (VIII) 

 𝛽1𝐶𝑙𝑙 + 𝛽2(∑ ∑ ∑ (𝐵𝑙𝑘
𝑖𝑗

𝑅𝑙𝑘
𝑖𝑗𝑛

𝑘=1
𝑛
𝑗=1

𝑛
𝑖=1 + 𝐵𝑘𝑙

𝑖𝑗
𝑅𝑘𝑙

𝑖𝑗
)) ≤ 𝑀𝑙 ,  ∀l (IX)  

Variables:         𝐵𝑘𝑙
𝑖𝑗

∈ {0,1}, 𝐶𝑖𝑗 , 𝑅𝑘𝑙
𝑖𝑗

, 𝑃𝑙 , 𝑀𝑙 ≥ 0   ,    ∀𝑘, 𝑙, 𝑖, 𝑗. 

 Note that Constraint (I) limits the number of admitted 
calls to the number of existing call requests. Constraint (II) 
offers a trade-off between the input and output flows; 
meaning that it enforces equal total inward and outward 
flows between each pair of origin and destination for 
server 𝑙. Constraint (III) aggregates the total input flows to 
server 𝑙 from origin 𝑖 passing through its neighbors. The next 
constraint distributes the total output flows from server 𝑙 to 
server 𝑗 among its neighbors. Constraint (V) prevents a flow 
with the same origin and destination. Constraint (VI) 
prevents the creation of certain loops in a given path, which 
will be discussed in Section IV. A. Constraint (VII) limits 

the binary variable 𝐵𝑘𝑙
𝑖𝑗

 in such a way that 𝐵𝑘𝑙
𝑖𝑗

 is zero 

for 𝐿𝑘𝑙 = 0, and it could be either zero or one if 𝐿𝑘𝑙 = 1. 
The next two constraints take into account the limited SIP 
resources of servers. Constraint (VIII) allocates the residual 
processing power of server 𝑙 to establish local and outbound 
calls with coefficients 𝛼1 and 𝛼2. Similarly, Constraint (IX) 
allocates the residual memory of server 𝑙 with coefficients 

𝛽1 and 𝛽2. It is noteworthy that the two variables 𝑅𝑙𝑘
𝑖𝑗

 and 𝑅𝑘𝑙
𝑖𝑗

 

contribute evenly to the servers’ resources. To estimate 
parameters 𝛼1, 𝛼2, 𝛽1, and 𝛽2, two linear programming 
models are proposed in Section IV.C. 

Although the objective function is linear, the nonlinear 

constraints and the binary variables 𝐵𝑘𝑙
𝑖𝑗

 render the model an 

MINLP which is generally NP-hard and unsolvable in 
polynomial time [25, 26]. To overcome this drawback, we 
propose certain modifications, which remove the 
nonlinearity and allow the problem to take the form of an 
LP. 

A. Proposed Heuristic Method 

Before discussing the proposed method, we should 
elaborate on loop characterization. We divide the loops 
between the origin and the destination into two types, 
namely k-hop source loop (SL) and k-hop non-source loop 
(nSL). In the former type, the source server participates in 
the loop, whereas, in the later, the loop is created by servers 
other than the source server. The proposed model in (1) can 
only bind SLs as it applies Constraints (V) and (VI). Fig. 4 
provides a visualization of the two loop types.  

Although the proposed model in (1) increases the total 
number of admitted calls, it can be easily shown that if 

∑ ∑ 𝐶𝑖𝑗𝑛
𝑗=1

𝑛
𝑖=1  is considered as the objective function, it is 

not possible to prevent nSLs. Given also that the nonlinear 
model is NP-hard, the objective function should be modified 
in such a way that not only maximizes the total number of 
admitted calls but also minimizes CPU and memory usages 
(Multi-objective). In multi-objective problems, several 
objective functions are optimized simultaneously. 

2 31

2 31 2 31

(a) k-hop Source Loop (SL)

(b) k-hop non Source Loop (nSL)

k= 0

k= 1

k= 2

2 31

 
Fig. 4. SL and nSL between the origin and destination flow path. Note 

that ‘1’ and ‘3’ are the origin and destination servers, respectively. 

An advantage of such a modification is that it would 
prevent nSLs since loops creation requires resources. To this 
end, we consider the following LP model:  

𝑚𝑎𝑥  𝛾
∑ ∑ 𝐶𝑖𝑗𝑛

𝑗=1
𝑛
𝑖=1

∑ ∑ ℂ𝑖𝑗𝑛
𝑗=1

𝑛
𝑖=1

− 𝜑(
∑ 𝑝𝑙

𝑛
𝑙=1

∑ 𝑃𝑙
𝑛
𝑙=1

+
∑ 𝑚𝑙

𝑛
𝑙=1

∑ 𝑀𝑙
𝑛
𝑙=1

)                     (2) 

 Subject to:  
 𝐶𝑖𝑗 ≤ ℂ𝑖𝑗  , ∀𝑖, 𝑗 (I) 
 ∑ 𝐿𝑘𝑙𝑅𝑘𝑙

𝑖𝑗𝑛
𝑘=1 = ∑ 𝐿𝑙𝑒𝑅𝑙𝑒

𝑖𝑗𝑛
𝑒=1    ,  ∀𝑖, 𝑗, 𝑙, 𝑖 ≠ 𝑙 , 𝑗 ≠ 𝑙 (II)  

 ∑ 𝐿𝑘𝑙𝑅𝑘𝑙
𝑖𝑙 = 𝐶𝑖𝑙𝑛

𝑘=1  ,  ∀𝑖, 𝑙, 𝑖 ≠ 𝑙 (III)  

 ∑ 𝐿𝑙𝑒𝑅𝑙𝑒
𝑙𝑗𝑛

𝑒=1 = 𝐶𝑙𝑗   ,     ∀𝑙, 𝑗, 𝑗 ≠ 𝑙 (IV)  

 𝑅𝑘𝑙
𝑖𝑖 = 0 ,  ∀𝑖, 𝑘, 𝑙 (V)  

 𝑅𝑘𝑖
𝑖𝑗

= 0 ,  ∀𝑖, 𝑗, 𝑘 (VI)  

 𝛼1𝐶𝑙𝑙 + 𝛼2(∑ ∑ ∑ (𝐿𝑙𝑘𝑅𝑙𝑘
𝑖𝑗𝑛

𝑘=1
𝑛
𝑗=1

𝑛
𝑖=1 + 𝐿𝑘𝑙𝑅𝑘𝑙

𝑖𝑗
)) ≤ 𝑝𝑙 ,  ∀𝑙 (VII)  

 𝛽1𝐶𝑙𝑙 + 𝛽2(∑ ∑ ∑ (𝐿𝑙𝑘𝑅𝑙𝑘
𝑖𝑗𝑛

𝑘=1
𝑛
𝑗=1

𝑛
𝑖=1 + 𝐿𝑘𝑙𝑅𝑘𝑙

𝑖𝑗
)) ≤ 𝑚𝑙 ,  ∀𝑙 (VIII)  

 𝑝𝑙 ≤ 𝑃𝑙   , ∀l (IX) 

 𝑚𝑙 ≤ 𝑀𝑙  ,  ∀𝑙 (X) 

Variables: 𝐶𝑖𝑗 , 𝑅𝑘𝑙
𝑖𝑗

, 𝑝𝑙 , 𝑚𝑙 ≥ 0   ,    ∀𝑖, 𝑗, 𝑘, 𝑙. 

Note that the connectivity between two servers is 
developed using the matrix 𝐿𝑖𝑗 . A loose upper bound for the 

optimal CPU and memory usages are given by 𝑝𝑙  and 𝑚𝑙, 
respectively, and based on Constraints (IX) and (X), they 
could reach the maximum 𝑃𝑙  and 𝑀𝑙 (the strict power 
bound). Constraints (VII) and (VIII) would further help the 

objective function prevent the creation of extra 𝑅𝑘𝑙
𝑖𝑗

, SL and 

nSL loops. Coefficients 𝛾 and 𝜑 indicate the significance of 

variables 𝐶𝑖𝑗 and resource usage (𝑝𝑙  and 𝑚𝑙) in the objective 
function, respectively. In other words, they offer a trade-off 
between the resource usage and network throughput. 
Ultimately, this model enhances the total throughput of the 
servers without any overload by using the optimal resource 
allocation. Here, the overall throughput could be considered 
as the total flow passing through the servers. Therefore, 
taking into account the servers’ resources, VLB-CAC tries to 
maximize call admission through distributing calls between 
the servers.  

B. VLB-CAC with Proactive Autoscaling  

In model (2), the enhancement of the call admission rate 
is dependent on server resources and the number of call 
requests. To overcome the resource limitations, we propose 
a novel resource autoscaling scheme at the VM level (Fig. 
5). It attempts to scale just enough resources to minimize 
resource waste, while tries to maximize call admission rate 
regarding the number of call requests. Autoscaling is a 
technique for dynamically adjusting the resources of VMs to 
an appropriate flavor in response to an increase in demand. 
A flavor is an available resource configuration for a VM on 
a server. It defines the size of a virtual server that can be 
launched (see Table III).  



 
Fig. 5 shows that this scheme includes four modules. 

Since autoscaling lasts for a few seconds [27], the proposed 
method must be predictive-driven. Predictive autoscaling 
algorithms predict future system behaviour and adjust 
resources in advance to meet the future needs. Therefore, 
Module 1 predicts the number of the call requests for the 

next 𝜏 (ℂ𝑖�̂�(𝑛𝜏 + 1)). Module 2 specifies the required 
resources for admission of the requests in each server 
((𝑝𝑙

∗, 𝑚𝑙
∗)(𝑛𝜏+1)). Module 3 selects the most appropriate 

flavor for each VM. The selected flavor might be more than 
the resources specified for the VM. Considering the selected 
flavors, Module 4 specifies an upper bound for the admitted 
calls in each server which has been obtained by Module 2. In 
this way, the method will be less sensitive to the predicted 
results. Eventually, the scheme makes a resource scaling 
decision for each server as a rule that is up or down or NOP 
(no operation) in each 𝜏.  

1) Module 1 - NLMS prediction system 
We focus on proactive autoscaling that is based on 

predictions of future workload (ℂ𝑖�̂�(𝑛𝜏 + 1)) based on the 

past workload (ℂ𝑖𝑗(𝑛𝜏)). The most important method in this 

area is time-series analysis. Time-series analysis could be 
used to detect repeating patterns in the workload or to 
estimate future values for resource allocation. Consequently, 
the scaling action is done in advance. In order to apply time-
series analysis in autoscaling domain, a certain performance 
metric will be periodically sampled at fixed intervals 

(ℂ𝑖𝑗(𝑛𝜏)). The result will be a time-series containing a 
sequence of last observations. Time-series methods 
extrapolate this sequence to predict future values. Some of 
the methods used for this purpose are Moving Average, 
Autoregression, Autoregressive–Moving-Average (ARMA), 
exponential smoothing, and machine learning techniques 
[27].  

We utilize the work of [28] that proposes a comparative 
analysis among prediction techniques, used for developing a 
dynamic prediction based the resource allocation strategy. 
Among these techniques, the Normalized Least Mean 
Square (NLMS) predictor is the one providing the best trade-
off between complexity, accuracy, and responsiveness.  

The general problem of prediction can be stated as 
follows: given a set of observations of a stochastic 
process 𝑥(𝑛), generate an estimation �̂�(𝑛 + 𝑘) of the value 
𝑥(𝑛 + 𝑘) that the process 𝑥 will assume 𝑘 steps ahead. 
Given a vector of 𝑝 observations, 𝑥 = [𝑥(𝑛), 𝑥(𝑛 −
1), … 𝑥(𝑛 − 𝑝 + 1)], the predicted value �̂� is obtained by 
�̂� = 𝜓(𝑥) where the function 𝜓 is called the predictor.  

NLMS Prediction 
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Fig. 5. VLB-CAC with autoscaling scheme 

Various categories of predictors have been studied; 
however, considering the constraint on the complexity, the 
linear prediction category is the best suited for our aim. A 
linear prediction happens whenever the function 𝜓(𝑥) is 

linear. Putting it differently, the problem is to specify the 
impulse response ℎ(𝑛) of the linear filter ℎ such that: 

�̂�(𝑛 + 𝑘) = 𝑥(𝑛)⨂ℎ(𝑛) = ∑ ℎ(𝑖)𝑥(𝑛 − 𝑖)
𝑝−1

𝑖=0
 (3) 

 The filters coefficients can be determined according to 
arbitrary optimality criteria. One of the widely adopted 
prediction technique is the so called Linear Minimum Mean 
Square Error (LMMSE) predictor, in which the values ℎ(𝑛) 
are derived by minimizing the Mean Square Error of 
prediction: 

𝔼[𝜖2(𝑛)] = 𝔼[(𝑥(𝑛 + 𝑘) − �̂�(𝑛 + 𝑘))2] (4) 

The problem of this predictor is that the derivation of the 
LMMSE filter needs the knowledge of at least 𝑝 values of 
the autocorrelation function of the stochastic process 𝑥(𝑛) 
and the inversion of a 𝑝 × 𝑝 matrix. These facts make 
LMMSE inappropriate for being used as on-line predictive 
method. Therefore, we consider the NLMS method, which is 
based on an adaptive mechanism. It does not require 
previous knowledge of the autocorrelation structure of the 
stochastic sequence [29]. The algorithm scheme is shown in 
Fig. 6.  

The filter coefficients are time varying and are tuned on 
the basis of the feedback information carried by the 
error ℇ(𝑛). We define the vector of filter coefficients at time 
𝑛 with ℎ𝑛. The values of ℎ adapt dynamically in order to 

decrease the Mean Square Error. Note that ℇ(𝑛) =
𝑥(𝑛 + 𝑘) − �̂�(𝑛 + 𝑘) and 𝑥𝑛 = [𝑥(𝑛), 𝑥(𝑛 − 1), … 𝑥(𝑛 −
𝑝 + 1)].  

The NLMS works as follows: Initialize the 
coefficient ℎ0; and for each new data, update the filter ℎ(𝑛) 

according to the recursive equation. 

ℎ𝑛+1 = ℎ𝑛 + 𝜇
ℇ(𝑛)𝑥𝑛

‖𝑥𝑛‖2
 (5) 

where ‖𝑥𝑛‖2 = 𝑥𝑛𝑥𝑛
𝑇 and 𝜇 is a fixed parameter called step 

size. Pursuant to [29], NLMS converges in the mean to 
LMMSE predictor as long as 0 < 𝜇 < 2. At time 𝑛, the 
values 𝑥(𝑛 + 𝑘), hence ℇ(𝑛), are not known. So, the value 
ℇ(𝑛 − 𝑘) is used, instead, and the one step NLMS predictor 
update equation becomes: 

ℎ𝑛+1 = ℎ𝑛 + 𝜇
ℇ(𝑛 − 1)𝑥𝑛−1

‖𝑥𝑛−1‖
2  (6) 

For our problem, the NLMS algorithm formulation can 
be summarized as: 

Parameters: 𝑝 = filter order, 𝜇 = step size  

Initialization: ℎ(0) = 0  

Computation: For 𝑛𝜏:  

 ℂ𝑖𝑗(𝑛𝜏) = [ℂ𝑖𝑗(𝑛𝜏), ℂ𝑖𝑗(𝑛𝜏 − 1), … ℂ𝑖𝑗(𝑛𝜏 − 𝑝 + 1)] (7) 

 ℂ𝑖�̂�(𝑛𝜏 + 1) = ℎ(𝑛𝜏) × ℂ𝑖𝑗𝑇
(𝑛𝜏) (8) 

 ℎ(𝑛𝜏) = ℎ(𝑛𝜏 − 1) + 𝜇
ℇ(𝑛𝜏 − 1)ℂ𝑖𝑗(𝑛𝜏 − 1)

‖ℂ𝑖𝑗(𝑛𝜏 − 1)‖
2  (9) 

 ℰ(𝑛𝜏) = ℂ𝑖𝑗(𝑛𝜏) − ℂ𝑖�̂�(𝑛𝜏) (10) 

 ‖ℂ𝑖𝑗(𝑛𝜏)‖
2

= ℂ𝑖𝑗(𝑛𝜏)ℂ𝑖𝑗𝑇
(𝑛𝜏) (11) 
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Fig. 6. NLMS algorithm 

Where ℂ𝑖𝑗(𝑛𝜏) and ℂ𝑖�̂�(𝑛𝜏 + 1) are input and output of 

Module 1, respectively. The NMLS predictor needs the 
configuration of two parameters: the order 𝑝 and the step 
size 𝜇. The order 𝑝 has been chosen to be 30, since it 
produced a good performance based on the results analysis. 
In the case of 𝜇, it is relevant to note that one of the 
important advantages of using NLMS is that it is less 
sensitive to the step size compared with other linear 
predictors. In our experiments, we chose the step value of 
0.8 as a trade-off between fast convergence and 
responsiveness to input change. We run various tests to tune 
this parameter. For small value of 𝜇, we apperceive that the 
prediction function slowly converges and is unable to follow 
sudden workload increase. For values of 𝜇 greater than 0.5, 
the prediction function is not sensitive to step size and 
results in a quicker response to workload changes. 

2) Module 2 – Resource aware 
The linear model presented below in (12) specifies the 

minimum amount of the resources required for the 
admission of the whole call requests in each server predicted 
for the next 𝜏 ((𝑝𝑙

∗, 𝑚𝑙
∗)(𝑛𝜏+1)). It also specifies the optimal 

values of 𝑅𝑘𝑙
𝑖𝑗

 and 𝐶𝑖𝑗  for the next 𝜏 ((𝐶𝑖𝑗∗
, 𝑅𝑘𝑙

𝑖𝑗 ∗
)(𝑛𝜏+1)). 

Considering Constraint (I), the value of (𝐶𝑖𝑗∗
)(𝑛𝜏+1) is equal 

to the number of the predicted requests by Module 1. Notice 
that this model is adopted from model proposed in (2). 

LP model: Resource-aware 
 

𝑚𝑖𝑛  
∑ 𝑝𝑙

𝑛
𝑙=1

∑ 𝑃𝑙
𝑛
𝑙=1

+
∑ 𝑚𝑙

𝑛
𝑙=1

∑ 𝑀𝑙
𝑛
𝑙=1

  (12) 

Subject to:  
 𝐶𝑖𝑗 = ℂ̂𝑖𝑗 , ∀𝑖, 𝑗 (I) 
 Constraints II – VIII of model in (2) , (II - VIII) 

  Variables: 𝐶𝑖𝑗 , 𝑅𝑘𝑙
𝑖𝑗

, 𝑝𝑙 , 𝑚𝑙 ≥ 0   ,    ∀𝑖, 𝑗, 𝑘, 𝑙. 

3) Module 3 - Select flavor 
Since creating a new flavor appropriate for the output of 

Module 2 takes more time than resizing the existing flavors, 
we assume that there are 𝒬 flavors with specific resources in 

the form of 𝑓𝑙𝑎𝑣𝑜𝑟 [𝒬] = [𝑃𝑓 , 𝑀𝑓]. Module 3 selects the 

most appropriate flavor for the VMs in each server 
(Algorithm 1). Each VM resizes its flavor before reaching 
the next 𝜏.  

4) Module 4 - Upper bound of admitted calls 
As there is a gap between each selected flavor and the 

resources for the VMs in each server, an upper bound is 
determined for admission of the call requests by the model 
shown in (13), which is a derivative of the model in (2). 

(𝐶𝑖𝑗 + 𝑐𝑖𝑗) and (𝑅𝑘𝑙
𝑖𝑗

+ 𝑟𝑘𝑙
𝑖𝑗

) are the upper bounds for 

admission of the call requests based on the selected flavors. 
In this way, the possibility of hold-on for the new calls 
reduces.  

 

Algorithm 1 Select Appropriate Flavors for next 𝜏 
Input: 1: 
𝑓𝑙𝑎𝑣𝑜𝑟 [𝒬] = [𝑃𝑓, 𝑀𝑓] 2: 
𝑝𝑙

∗, 𝑚𝑙
∗ 3: 

Output: 4: 
for 𝑗 = 1 to number of SIP servers (n) 5: 
     for 𝑖 = 1 to number of flavors (𝒬)  6: 
          if  𝑓𝑙𝑎𝑣𝑜𝑟 [𝑖]. [𝑃𝑓] ≥ 𝑝𝑗

∗ then 7: 
               if  𝑓𝑙𝑎𝑣𝑜𝑟 [𝑖]. [𝑀𝑓] ≥ 𝑚𝑗

∗ then 8: 

                    𝑆𝑒𝑙𝑒𝑐𝑡𝑒𝑑_𝑓𝑙𝑎𝑣𝑜𝑟[𝑗] = 𝑓𝑙𝑎𝑣𝑜𝑟 [𝑖]  9: 
                    break 10: 
              end if 11: 
         end if 12: 
    end for 13: 
end for 14: 

   LP model: Upper bound of admitted calls 

 

𝑚𝑎𝑥 ∑ ∑ 𝑐𝑖𝑗𝑛
𝑗=1

𝑛
𝑖=1                      (13) 

   Subject to:  
 ∑ 𝐿𝑘𝑙(𝑅𝑘𝑙

𝑖𝑗 ∗
+ 𝑟𝑘𝑙

𝑖𝑗
)𝑛

𝑘=1 =

∑ 𝐿𝑙𝑒(𝑅𝑙𝑒
𝑖𝑗∗

+ 𝑟𝑙𝑒
𝑖𝑗

)𝑛
𝑒=1    ,  

∀𝑖, 𝑗, 𝑙, 𝑖 ≠ 𝑙 , 𝑗 ≠ 𝑙 (I)  

 ∑ 𝐿𝑘𝑙(𝑅𝑘𝑙
𝑖𝑙 ∗

+ 𝑟𝑘𝑙
𝑖𝑙) = (𝐶𝑖𝑙∗

+𝑛
𝑘=1 𝑐𝑖𝑙) ,  ∀𝑖, 𝑙, 𝑖 ≠ 𝑙 (II)  

 ∑ 𝐿𝑙𝑒(𝑅𝑙𝑒
𝑙𝑗∗

+ 𝑟𝑙𝑒
𝑙𝑗

)𝑛
𝑒=1 = (𝐶𝑙𝑗∗

+ 𝑐𝑙𝑗) ,     ∀𝑙, 𝑗, 𝑗 ≠ 𝑙 (III)  

 𝑅𝑘𝑙
𝑖𝑖 ∗

+ 𝑟𝑘𝑙
𝑖𝑖 = 0 ,  ∀𝑖, 𝑘, 𝑙 (IV)  

 𝑅𝑘𝑖
𝑖𝑗 ∗

+ 𝑟𝑘𝑖
𝑖𝑗

= 0 ,  ∀𝑖, 𝑗, 𝑘 (V)  

 𝛼1(𝐶𝑙𝑙∗
+ 𝑐𝑙𝑙) + 𝛼2(∑ ∑ ∑ (𝐿𝑙𝑘(𝑅𝑙𝑘

𝑖𝑗 ∗
+ 𝑟𝑙𝑘

𝑖𝑗
)𝑛

𝑘=1
𝑛
𝑗=1

𝑛
𝑖=1 +

𝐿𝑘𝑙(𝑅𝑘𝑙
𝑖𝑗 ∗

+ 𝑟𝑘𝑙
𝑖𝑗

))) ≤ 𝑃𝑓
∗ ,  

 
∀𝑙 (VI)  

 𝛽1(𝐶𝑙𝑙∗
+ 𝑐𝑙𝑙) + 𝛽2(∑ ∑ ∑ (𝐿𝑙𝑘(𝑅𝑙𝑘

𝑖𝑗 ∗
+ 𝑟𝑙𝑘

𝑖𝑗
)𝑛

𝑘=1
𝑛
𝑗=1

𝑛
𝑖=1 +

𝐿𝑘𝑙(𝑅𝑘𝑙
𝑖𝑗 ∗

+ 𝑟𝑘𝑙
𝑖𝑗

))) ≤ 𝑀𝑓
∗ ,  

 
∀𝑙 (VII)  

Variables: 𝑐𝑖𝑗 , 𝑟𝑘𝑙
𝑖𝑗

≥ 0   ,    ∀𝑖, 𝑗, 𝑘, 𝑙. 

VLB-CAC sends the values of (𝐶𝑖𝑗∗
+ 𝑐𝑖𝑗 ∗

)(𝑛𝜏+1) and 

(𝑅𝑘𝑙
𝑖𝑗 ∗

+ 𝑟𝑘𝑙
𝑖𝑗∗

)(𝑛𝜏+1) and the selected flavors for the next 𝜏 to 

the servers. Each server has an autoscaling rule table, which 
resizes its VM (Table I). 

TABLE I.  AUTOSCALING RULE TABLE 

𝐴𝑐𝑡𝑖𝑜𝑛𝑠 𝑅𝑢𝑙𝑒𝑠 

NOP (selected flavor)(nτ)  = (selected flavor)(nτ+1) 

Scale UP (selected flavor)(𝑛𝜏)  < (selected flavor)(𝑛𝜏+1) 

Scale Down (selected flavor)(𝑛𝜏)  > (selected flavor)(𝑛𝜏+1) 

C. Calculation of α and β 

We propose the following two linear models to 
approximate the coefficients 𝛼 and 𝛽. To this end, consider 

the quadruple (�́�𝑞
𝑖𝑖, �́�𝑖𝑗,𝑞

𝑖𝑗
 , �́�𝑞 , �́�𝑞 )𝑞=1,…,ℎ, where �́�𝑞

𝑖𝑖 is the 

number of local calls in server 𝑖, �́�𝑖𝑗,𝑞
𝑖𝑗

 is the number of 

outbound calls of server 𝑖, �́�𝑞 and �́�𝑞 are CPU and memory 

usages  in server 𝑖, respectively. We acquire all ℎ samples of 
this quadruple by conducting tests on a real testbed

1
.  

Consider the following: 

 𝑚𝑖𝑛 ∑ 𝑥𝑞
𝑛
𝑞=1   (14)  

Subject to:   
  �́�𝑞 − (𝛼1�́�𝑞

𝑖𝑖 + 𝛼2�́�𝑖𝑗,𝑞
𝑖𝑗

) ≤ 𝑥𝑞 ,    𝑞 = 1, … , 𝑛 (I)  

 
𝛼1 +  𝛼2 =

𝑚𝑎𝑥 {�́�𝑞}

𝑚𝑎𝑥 {�́�𝑞
𝑖𝑖} 

  ,  𝑞 = 1, … , 𝑛 (II)  

Variables:     𝛼1, 𝛼2, 𝑥𝑞 ≥ 0   ,   𝑞 = 1, … , 𝑛, 

 𝑚𝑖𝑛 ∑ 𝑦𝑞
𝑛
𝑞=1   (15)  

Subject to:   
 �́�𝑞 − (𝛽1�́�𝑞

𝑖𝑖 + 𝛽2�́�𝑖𝑗,𝑞
𝑖𝑗

) ≤ 𝑦𝑞 ,   𝑞 = 1, … , 𝑛 (I)  

                                                           
1
 The tests are performed on SAVI testbed. 



 
 

𝛽1 + 𝛽2 =
𝑚𝑎𝑥 {�́�𝑞}

𝑚𝑎𝑥 {�́�𝑞
𝑖𝑖} 

   ,  𝑞 = 1, … , 𝑛 (II)  

Variables:   𝛽1, 𝛽2, 𝑦𝑞 ≥ 0   ,   𝑞 = 1, … , 𝑛. 

 
Considering the first constraints of (14) and (15), the 

objective functions are designed to minimize the sum of the 
difference between measured values of �́�𝑞 and �́�𝑞 with 

𝛼1�́�𝑞
𝑖𝑖 + 𝛼2�́�𝑖𝑗,𝑞

𝑖𝑗
 and 𝛽1�́�𝑞

𝑖𝑖 + 𝛽2�́�𝑖𝑗,𝑞 
𝑖𝑗

, respectively. In other 

words, 𝑥𝑞  denotes the difference between measured �́�𝑞 

and 𝛼1�́�𝑞
𝑖𝑖 + 𝛼2�́�𝑖𝑗,𝑞

𝑖𝑗
, and 𝑦𝑞 denotes the difference between 

�́�𝑞 and 𝛽1�́�𝑞
𝑖𝑖 + 𝛽2�́�𝑖𝑗,𝑞 

𝑖𝑗
, respectively. Objective functions 

(14) and (15) seek the optimal values for 𝛼 and 𝛽 by 
minimizing 𝑥𝑞  and 𝑦𝑞 . This is because to minimize to the 

objective functions, the first constraints has to diminish �́�𝑞 −

(𝛼1�́�𝑞
𝑖𝑖 + 𝛼2�́�𝑖𝑗,𝑞

𝑖𝑗
) and �́�𝑞 − (𝛽1�́�𝑞

𝑖𝑖 + 𝛽2�́�𝑖𝑗,𝑞
𝑖𝑗

) in (15). 

Hence, 𝛼1�́�𝑞
𝑖𝑖 + 𝛼2�́�𝑖𝑗,𝑞

𝑖𝑗
 approaches  �́�𝑞 only when 𝛼 is 

optimized. Note that the second constraints are imposed for 
the purpose of normalization of the first constraints. 

V. PERFORMANCE EVALUATION 

A. Simulations and Numerical Results 

To simulate and assess the performance of the proposed 
model in Eq. (2), we implement our work in MATLAB. We 
considered the topology shown in Fig. 7; moreover, the three 
scenarios of Table II are investigated with different 𝛾 and 𝜑 
(represented in four Cases: f1 to f4). In all scenarios, calls are 

generated in random with the normal distribution (ℂ𝑖𝑗). 
The values of 𝑀𝑙 and 𝑃𝑙  (𝑙: 1, … , 𝑛) are set to 100 for all 

servers. 𝜏 is set to 3 seconds for all runs. Furthermore, for 𝛼 
and 𝛽 coefficients, the obtained values in Section V.B.2 are 
considered. These values are 0.07841 and 0.02158 for 𝛼1 

and 𝛼2 and 0.06998 and 0.01997 for 𝛽1 and 𝛽
2
, respectively. 

Figs. 8 and 9 illustrate optimal values of  𝑝𝑙  and 𝑚𝑙 for 
all servers. In addition, Fig. 10 presents optimal call 
admission rates for different cases in different scenarios. In 
these figures, for all scenarios, by considering different cases 
(f1 to f4), the resource usage and call admission rates show 
an increasing trend. 

In this regard, the ratio between parameters 𝛾 and 𝜑 
illustrates the importance of call admission or resource 
preservation. In case f1, resource preservation is more 
significant as compared to case f4. In contrast, in case f4, the 
maximum call admission is preferred, even if it results in 
higher resource consumption (Fig. 10). By making a trade-
off between these parameters, it is possible to promote the 
call admission rates and optimal usage of the resources. 
Moreover, regarding the amount of load from Scenario 1 to 
Scenario 3, Figs. 8 and 9 reveal that resource usages would 
be raised; however, the input load of the network must be so 
high that even using the entire resource, it is not possible to 
respond to all input calls (Fig. 10, Scenario 3, cases f3 and 
f4).  In Scenario 1, the SIP servers do not enter the overload 
condition, as all input loads are admissible by using the 
limited amount of resources (Fig. 10, Scenario 1, cases f3 
and f4). 
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Fig. 7. The analyzed topology 

TABLE II.  THE SCENARIOS  

ℂ𝑖𝑗  ∑ ∑ ℂ𝑖𝑗𝑛
𝑗=1

𝑛
𝑖=1   

8 60 30 48 20 10 

54 48 54 20 50 10 

12 40 30 100 44 44 

14 50 46 30 20 10 

20 54 20 30 50 50 

15 54 40 25 40 50 

Scenario 1 (low load) 

 

1300 

58 93 65 64 60 50 

40 42 70 70 95 60 

92 60 30 70 65 40 

94 60 86 20 30 50 

80 70 50 60 76 90 

85 70 44 70 95 46 

Scenario 2 (medium load) 

2300 

65 105 80 84 120 110 

98 100 75 80 105 70 

98 120 90 125 75 78 

100 115 95 80 90 60 

94 102 60 108 86 100 

85 78 104 94 105 66 

Scenario 3 (high load) 

3300 

 
Fig. 8. The optimal CPU usages (𝑝𝑙) 

 
Fig. 9. The optimal memory usage (𝑚𝑙) 

 

Fig. 10. The optimal call admission rate 

For instance, in this scenario, in Case f3, the optimal 
value of 𝑚1 and 𝑝1 for admitting all input calls are 15.3214 
and 20.64201, respectively. In Scenario 2, the offered load is 
higher than that of Scenario 1; the maximum call admission 
rate can be obtained in f4 (Fig. 10). However, in this case, 
more resources are used compared to the previous scenario 
(Figs. 8 and 9). The comparison of Figs. 8, 9, and 10 
indicates that in Scenario 3 even using the entire servers’ 
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resources, it is not possible to reach optimum call admission 
rate greater than 86%, as the input load would exceed the 
network capacity and the extra load would be blocked. By 
solving the model in Eq. (2), in addition to determining the 

optimal values of 𝑚𝑙, 𝑝𝑙 , and 𝐶𝑖𝑗, the optimal 𝑅𝑘𝑙
𝑖𝑗

 is also 

determined. For instance, in Scenario 3 and Case f4, the total 
call requests from path 1 to 6 (ℂ16) is 65 in which 27.5 is 
admitted (𝐶16). Distribution of these admitted calls is shown 
in Fig. 11, 𝐶16 is distributed between two paths to reach the 

maximum objective function as path 1: (𝑅13
16 = 11.2, 𝑅35

16 =
11.2, 𝑅56

16 = 11.2) and path 2: (𝑅12
16 = 16.3, 𝑅24

16 =
16.3, 𝑅46

16 = 16.3). For all Cases f1 to f4, the load is 
distributed among the servers in a way that the maximum 
value for the objective function is achieved. The average 
time for each run (𝑡𝑐) is almost 0.95 seconds, which can be 
ignored compared to the call length. 

B. Implementation and the Experimental Results 

This section is organized in 8 subsections. We describe 
our implementation details in Section V.B.1. In Section 
V.B.2 measurements of 𝛼 and 𝛽 are mentioned. In Section 
V.B.3 to V.B.5, we evaluate the VLB-CAC and give 
comprehensive results. Performance evaluation of VLB-
CAC with autoscaling (Section V.B.6 and V.B.7), and the 
effect of time slot 𝜏 (Section V.B.8) are documented in the 
remaining subsections. 

1) Practical considerations and configurations 
To evaluate the performance of the proposed VLB-CAC 

in a real environment, we implanted it in the Natural 
Sciences and Engineering Research Council of Canada 
Strategic Network for Smart Applications on Virtual 
Infrastructure (SAVI) [11]. The SAVI project outlines a 
cloud system composed of two cloud types: core and smart 
edge (Fig. 12). As shown in Fig. 13, SAVI nodes incorporate 
open source software and hardware including OpenStack, 
OpenFlow and NetFPGAs [11]. Janus is the super controller 
of SAVI testbed.  It controls converged heterogeneous 
resources (OpenStack, OpenFlow, FPGAs, GPUs). While 
Janus is controlling SAVI testbed, it utilizes Whale (a 
topology manager). Whale collects cloud computing 
resource information using OpenStack and networking 
resource information using OpenFlow and provides the 
status of all resources and their connectivity to Janus. 

We define two different topologies namely Local and 
Wide shown in Figs. 14 (A) and (B), respectively. In the 
Local topology, all VMs are located at the University of 
Toronto (UofT) edge cloud while in the Wide topology, each 
VM is located on a different edge of the SAVI testbed. 
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Fig. 11. Load distribution in paths among servers 1 through 6 in Scenario 3 
Case f4, (signaling paths) 

 

Fig. 12. Deployment of SAVI testbed in Canadian universities [11] 

 
Fig. 13. Structure of a SAVI node [11] 

We use the open source Elastix v.3 software [30] to 
implement the SIP servers on VM1 to VM6. On VM7, the 
open source SIPp software [31] is used as well to implement 

the user agents and inject the traffic (ℂij).  We implemented 
the proposed VLB-CAC on VM8, using PuLP [32]. This 
software is used to solve the mathematical models. PuLP is 
an LP modeler written in Python. We used Python, version 
3.4. Furthermore, to make a connection between SIP servers, 
SIP trunk was used. For example, in VM1, only two SIP 
trunk connections to VM2 and VM3 have been defined. We 
use Centos as the operating system of VMs 1 to 6 and 
Ubuntu for VMs 7 and 8. 

Each VM in the SAVI testbed can have one of the four 
flavors shown in Table III. All the VMs 1-8 have 
homogeneous features and their initial flavor is ml.small. By 
running the following command, each VM can be resized: 
nova resize <VM Instance Name> <new flavor>. 
For example, by running the command 
nova resize VM1 m1.medium, the VM 1 flavor can be 
changed to ml.medium. 
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Fig. 14. (A): Local topology, (B): Wide topology  



 
TABLE III.  AVAILABLE VM FLAVORS SPECIFICATIONS ON SAVI TB  

Disk (GB) vCPUs Memory (MB) Flavor 
20 1 2048 m1.small 
40 2 4096 m1.medium 
80 4 8192 m1.large 

160 8 16384 m1.xlarge 
The reports of Elastix v.3 software are used to measure 

call status, and OProfile software [33] is utilized to measure 
CPU and memory usages. The values of the CPU and 
memory usages (𝑃𝑖  and 𝑀𝑖) are transferred to VLB-CAC 
through the use of Psutil tools [34] on each SIP server. Psutil 
(Python system and process utilities) is a cross-platform 
library for retrieving information on running processes and 
system utilization (CPU, memory, disks, and network) in 
Python. 

Elastix v.3 software is a SIP server with an SIP proxy 
called SIP Proxy Kamailio (OpenSER) [35]. The proxy node 
is responsible for directing the call requests while the server 
node is responsible for responding to them. The optimal 

values of 𝐶𝑖𝑗 and 𝑅𝑖𝑙
𝑘𝑗

 calculated by VLB-CAC are 

transferred to VMs using UDP messages and are set in its 
kamailio configuration file (kamailio.cfg). It is important to 
note that if these values are non-integer, they will be 
rounded down and then sent to the nodes. 

Suppose a call request (“INVITE” message) has reached 
an SIP server on VM i. Kamailio detects the message’s 
initial source and final destination based on the message 
field headers: 

 If both source and destination of the call are node i: 

If 𝐶𝑖𝑖 > 0, this message is delivered to Elastix SIP server 

on VM i to be handle and 𝐶𝑖𝑖 is decreased by 1. If 𝐶𝑖𝑖 = 0, 
then this message is dropped in the fastest time possible 
before sending the “180 ringing” message. This makes the 
amount of resources that the SIP server spends for the 
dropped calls almost insignificant. This is also evident from 
the reported results. 

 If the request source is node i and the destination is node j: 

If 𝐶𝑖𝑗 > 0, the value of 𝑅𝑖𝑙
𝑖𝑗

, 𝑙 ∈ {𝑖 𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑟𝑠} is 

checked for all ls. If there are several 𝑅𝑖𝑙
𝑖𝑗

> 0, one is chosen 

randomly and the “INVITE” is sent to node l through the 

related SIP trunk. Then, 𝑅𝑖𝑙
𝑖𝑗

 and 𝐶𝑖𝑗 are decreased by 1. If 

𝐶𝑖𝑗 = 0, then this message is dropped as suggested 
previously. 

 If the request source is node k and the destination is node j:  

The value of 𝑅𝑖𝑙
𝑘𝑗

, 𝑙 ∈ {𝑖 𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑟𝑠} is checked for all ls 

and if there are several 𝑅𝑖𝑙
𝑘𝑗

> 0, one is chosen randomly and 

the “INVITE” message is sent to node l through the related 
SIP trunk.  

 If the request source is node k and the destination is node i: 
This message is delivered to Elastix node i to be handled. 

2) Measurement of α and β 
To compute coefficients 𝛼 and 𝛽, random inbound and 

outbound calls were established in the SIP server on VM 1 
and the CPU and memory usages of the server were 
measured. This experiment was repeated for 100 times and 
the results were gathered in a dataset. By solving Eq. (3) and 
(4), 𝛼1 and 𝛼2 were determined as 0.07841 and 0.02158, and 
𝛽1 and 𝛽2 were obtained 0.06998 and 0.01997, respectively. 
In the following, each experiment is conducted in a period of 
𝜏 = 3𝑠 unless mentioned otherwise. 

3) Effect of VLB-CAC on the server’s performance 
Fig. 15 shows the comparison of the SIP servers’ 

performances in both local and Wide topologies in the 

presence and absence of VLB-CAC. Fig. 15 (A) and (B) 
(without VLB-CAC bar graph) confirm that if the incoming 
calls and network resources of the SIP servers are not 
monitored, the increase in offered load will cause resource 
saturation (Scenario 3). In this case, the servers are full of 
“INVITE” messages and send a retransmission request for 
the lost messages (Fig. 15 (C), without VLB-CAC bar 
graph). As already mentioned, this leads to more 
consumption of resources, increases the average call setup 
delay (the time between sending “INVITE” from the user 
agent and receiving “200 OK” from the SIP server) and 
causes a sharp drop in throughput (the number of serviced 
calls in a time unit) (Fig. 15 (D) , (E), without VLB-CAC 
bar graph). The drop in the number of serviced call steadily 
increases the retransmission rate (Fig. 15 (C), without VLB-
CAC bar graph) and the resource consumption (Fig. 15 (A), 
(B), without VLB-CAC bar graph) and worsens the 
situation. 

In the presence of VLB-CAC, servers will never face 
resources saturation (Fig. 15 (A), (B)) and, therefore, even in 
the case of overload (Scenario 3), server performance will 
not drop and the server will not suffer the consequences of 
the overload (Fig. 15 (E)). For example, in Case f4 in 
Scenario 3 and in the Wide topology, without a sudden 
increase of the retransmission rate and the average call setup 
delay (Fig. 15 (C) , (D)), by spending an average of  98% of 
the CPU and 92% of the memory of all SIP servers, 2837 
calls are admitted from 3300 call requests, and 2727 calls are 
serviced (Fig. 15 (E)), whereas in the absence of VLB-CAC 
in this scenario, only 750 call requests are serviced (Fig. 15 
(E), without VLB-CAC bar graph). 

Moreover, as shown in Table II, in Case f2 of the second 
scenario, there are 2300 call requests created in total among 
which 1683 are admitted by VLB-CAC, and thus the 
admission rate reaches to 71.22% (Fig. 10). In the Local 
topology, among 1638 calls, only 49 calls do not end 
successfully while 1589 calls are serviced successfully (Fig. 
15 (E)). Also in the Wide topology, from among 1638 calls, 
only 88 calls did not end successfully while 1550 calls are 
serviced successfully. According to Fig. 15 (E) repeating this 
experiment will clearly show that rounding the VLB-CAC 
values does not affect the number of the successfully 
serviced calls since the constraints of the proposed model in 
Eq. (2) are still in a feasible region. 

Therefore, in the absence of VLB-CAC, since the 
resources are fully occupied, throughput is very low. While 
in the presence of VLB-CAC, an optimum throughput can 
be achieved through resource management. The results 
given in Fig. 15 (D) show that in Scenario 1, the average call 
setup delay is a little more in the presence of VLB-CAC. 
This is due to the time spots of 𝑡𝑔, 𝑡𝑐, and 𝑡𝑛 in VLB-CAC. 

VLB-CAC is able to prevent the retransmission rate increase 
and control the average delay in Scenarios 2 and 3 through 
spending these time spots. 

4) Simulation & implementation results comparison 
In this subsection, we compare the simulation and 

implementation results together to evaluate the validation of 
both the simulation and the implementation models. Figs. 16 
and 17, show resource consumption of all VMs for Cases f2 
and f4 in Scenario 2 (medium load). The results reported in 
these figures confirm that the performance of the SIP servers 
in both Wide and Local topologies are very close to that 
obtained by the simulation. Note that as SAVI uses the high-
speed Layer 2 switching with 10GB links in its testbed, the 
end to end delay and the processing time is negligible, so the 
results for both Local and Wide topology are close to each 
other.  



 

 
A: Average CPU consumption of VMs (�̅�𝑙) 

 
B: Average memory consumption of VMs (�̅�l) 

 
C: “INVITE” message retransmission rate 

 
D: Average call setup delay 

 
E: Number of admitted and serviced call requests 

Fig. 15. Comparison of the results obtained in SAVI testbed with and without VLB-CAC 

5) Resizing the virtual machines  
As shown in Fig. 15 (E), VLB-CAC reaches an 

admission rate of 100% in both Scenarios 1 and 2, but as 
already noted in Fig. 10 and Fig. 15 (E), in Scenario 3, an 
optimum admission rate greater than 86% cannot be 
achieved due to the network resources input overload. In this 
situation, to achieve a greater admission rate and 
consequently greater service rate, we can use the resizing 
capability of the VM resources in the SAVI testbed. By 
changing all VMs from small to medium flavor and for 
Wide topology, Scenario 3 was performed with 𝜏 = 3𝑠. For 
this flavor, the new values of 𝛼1 and 𝛼2  are 0.08012 and 
0.02329 and for 𝛽1 and 𝛽2 are 0.07169 and 0.02168, 
respectively. In Fig. 18, before and after the flavor change, 
the CPU and memory usages and the number of admitted 
calls are shown. 

After resizing, VLB-CAC can achieve a call admission 
rate of 100% for Cases f3 and f4 of Scenario 3, (Fig. 18 (E)). 
As shown in Fig. 18 (F) for Cases f3 and f4 in Scenario 1 
and Case f4 in Scenario 2, the call rejection rate is zero. In 
Scenario 3, by resizing the VMs, the call rejection rate can 
reach zero (Fig. 18 (F), Scenario 3 Cases f3 and f4). 
Furthermore, the comparison of the results obtained before 
and after resizing confirm that more call requests can be 
admitted and serviced after resizing.  

 

 

 
Fig. 16. Comparison of CPU usage in both simulation and implementation 
mode for Local and Wide topologies for two Cases f2 and f4 

 
Fig. 17. Comparison of memory usage in both simulation and 

implementation mode for Local and Wide topologies for two Cases f2 and 
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A: CPU consumption per VM (𝑝𝑙) 

 
B: Average CPU consumption of VMs (�̅�𝑙) 

 
C: Memory consumption per VM (𝑚𝑙) 

 
D: Average memory consumption of VMs (�̅�𝑙) 

 
E: Number of admitted and serviced call requests by VLB-CAC 

 
F: Call requests rejection rate by VLB-CAC 

Fig. 18. Results of resizing VMs in SAVI testbed with VLB-CAC (Wide topology) 

For example, in Case f1 of Scenario 3, the values of �̅�𝑙 
before and after resizing are equal to 27% and 47% (Fig. 18 
(B)), respectively; the values of  �̅�𝑙 before and after resizing 
are equal to 22% and 35% (Fig. 18 (D)), respectively. The 
number of admitted calls before and after resizing are equal 
to 594 and 1500, respectively. The number of serviced 
requests in the Wide topology before and after resizing are 
equal to 564 and 1430 (Fig. 18 (E)), respectively. Therefore, 
resources can be virtualized to increase throughput in SIP 
networks. 

In Fig. 18, parts (A) to (D), it is emphasized that none of 
𝑝𝑙s and 𝑚𝑙s have a significant difference with �̅�𝑙s and �̅�𝑙s. It 
means that the traffic has been uniformly distributed 
between all servers. Note that the mean and standard 

deviation of ℂ𝑖𝑗  in Scenario 3 are equal to 91.66 and 14.24, 
respectively. Furthermore, all VMs have the same flavor 
before and after resizing. An example of a load distribution 
is provided in Fig. 19 (A). The distribution of ℂ16 before 
resizing in the Wide topology in Case f4 of Scenario 3 is 
shown in this figure. The simulation results of this case were 
already shown in Fig. 11.  

A comparison between Figs. 19 (A) and 11 will lead to 
this understanding that the implementation results are very 
close to the simulation results and therefore, the settings of 
the configuration files (kamailio.cfg) of each node proxy for 

directing the admitted calls has been done properly. Among 
65 requests (ℂ16), 27.5 (𝐶16) requests are admitted and 
routed by VLB-CAC (Fig. 11), but before sending the results 

to the servers, the values of 𝐶𝑖𝑗 and 𝑅𝑘𝑙
𝑖𝑗

 are rounded down. 

At the end of 𝜏, a total of 25 “INVITE” requests are serviced 
and distributed between two paths (Fig. 19 (A)). After 
resizing, all the 65 requests are admitted and 62 requests are 
serviced based on the distribution shown in Fig. 19 (B). 

6) Autoscaling of virtual machines 
All previous experiments were only conducted in a 

period of 𝜏 = 3s. This section examines the carried load and 
the average resource consumption in Case f4 in the Wide 
topology. We evaluate the system for a time interval equal to 
3000 seconds. Two different cases 𝜏 = 3𝑠 and 𝜏 = 3.5s are 
considered (Fig. 20). In case 𝜏 = 3𝑠 and 𝜏 = 3.5s, we have 
1000 and 857 periods, respectively. The initial flavor of all 
VMs is set to small. To evaluate the performance of the 
system under the sudden change in the offered load, five 
different scenarios were run tandem, each for 600s. As it can 
be seen in Fig. 20 (A), at the first 600s, a low load (Scenario 
1) is injected; at t = 600s, the offered load is increased by 
applying Scenario 2 with the medium load. At t = 1200s, a 
high load (Scenario 3) is injected to the system. After that at 
the next two 600s time intervals, the offered load is reduced 
to Scenarios 2 and 1, respectively.  
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Fig. 19. Load distribution in paths among servers 1 through 6 (Wide topology), (A): Before resizing VMs, (B): After resizing VMs 

It can be seen that in all scenarios, by using VLB-CAC, 
we can achieve a high carried load close to the offered load 
(Fig. 20 (A)), while we consume fewer resources compared 
to the case when we do not use VLB-CAC (“Without VLB-
CAC” curve in Fig. 20 (B), (C)). Furthermore, in all 
scenarios with VLB-CAC, the carried load in case 𝜏 = 3𝑠 is 
a little bit more than the case 𝜏 = 3.5s since in the case  
𝜏 = 3𝑠, the hold-on time for the new calls is less and the 
intervals of VLB-CAC decisions is shorter and consequently 

𝑅𝑘𝑙
𝑖𝑗

 and 𝐶𝑖𝑗 are more accurate. However, as shown in Fig. 20 

(B), (C), the CPU and memory consumption in case 𝜏 = 3𝑠 
is more than that of case 𝜏 = 3.5s.  

Moving from Scenario 1 to Scenario 2, the offered load 
is increased and the carried load in both cases is also 
increased. At t = 1200s, a flash crowd occurs and the 
offered load changes to the high load scenario continue for 
600 seconds. Flash crowd occurs when a large number of 
users simultaneously attempt to make a call. Several factors 
affect the occurrence of the flash crowd. For example, on 
television voting or on special days like New Year’s Day, a 
large number of calls are placed at short intervals imposing 
an overload on the network. In the case of “Without VLB-
CAC”, despite the full occupation of the resources (Fig. 20 
(B), (C)), the carried load is dropped sharply and the 
network suffered the consequences of the overload (Fig. 20 
(A)). The overload is so severe that by reducing the offered 
load at t = 1800s, the network service rate does not return 
to its normal case. This is because the resources are not 

completely released due to their participation in message 
retransmissions (Fig. 20 (B), (C), the fourth 600 seconds).  

As discussed in Section V.B.5, in the case of “With 
VLB-CAC” in Scenario 3, since the input load is higher than 
the network resources, a throughput very close to the offered 
load cannot be achieved (Fig. 20 (A)) even by spending 
more resources (Fig. 20 (B), (C)). This issue can be resolved 
by increasing the server resources.  

We have equipped VLB-CAC with proposed autoscaling 
scheme in Section IV.B. Autoscaling enables VLB-CAC to 
automatically scale up the SIP server when facing overload 
condition and scale down when the condition is normal. At 
the start of Scenario 3 (t = 1200s) and in the case of “With 
VLB-CAC (τ = 3s)”, call admission rate, �̅�𝑙 and �̅�𝑙 are 
respectively 86%, 98% (of 1 vCPU) and 92% (of 2 GB 
memory).  

In the case of “With VLB-CAC and Autoscaling (τ = 
3s)”, the VMs flavor is upgraded from small to medium (2 
vCPUs and 4 GB memory). In this way, call admission 
rate, �̅�𝑙  and �̅�𝑙 for the new flavor are 100%, 62% (of 2 
vCPUs) and 55% (of 4 GB memory), respectively. As a 
result, among 3300 call requests, a total number of 3190 
(Fig. 20 (A), (τ = 3s)) or 3050 (Fig. 20 (A), (τ = 3.5s)) calls 
are serviced from t = 1200s to t = 1800s. As at t =
1800s, the offered load drops, the VMs flavor is changed 
from medium to small and the additional resources are 
released. In the last two scenarios (from second 1800 to 
3000), the carried load can be raised nearly to the offered 
load without changing the flavor. 

 
A: Number of serviced requests 

 
(�̅�𝑙)B: Average CPU consumption of VMs  

 
C: Average memory consumption of VMs (�̅�𝑙) 

Fig. 20. SIP Network performance over time as the offered varies (Wide topology) 
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7) Effect of node failure 
In addition to the flash crowd, another reason causing the 

overload of the SIP servers is the sudden failure of the 
network nodes and the reduction of network capacity. This 
failure may be due to the load imposed by the failed server 
on the others in the network. To evaluate the performance of 
VLB-CAC when facing this situation, we inject  ℂ16 =
1000 calls (offered load) to the Wide topology over a period 
of 600 seconds. At t = 200s, VM3 fails and at t = 400s, it 
goes back to service again. The results are shown in Fig. 21.  

As can be seen in Fig. 21 (A), by t= 200s, an average of 
955 requests is serviced with VLB-CAC. When VM3 is 
shutdown at t = 200s, there is only one available path 
for ℂ16 (path 2). In this condition, VLB-CAC intends to use 
most of the server capacity in the existing path without 
disturbing consequences of the overload to cope with the 
sharp drop of the service rate. That is why �̅�𝑙 and �̅�𝑙 
increase approximately to 97% and 92% (Fig. 21 (B), (C)). 
However, at t = 200s, the carried load drops to 637 calls 
and the average call admission rate reaches 64.5% (Fig. 21 
(A)). The use of autoscaler in VLB-CAC provides the 
requirements for resizing the VMs in path 2 from small to 
medium.  

In this way, at t = 200s, the carried load reaches to 955 
without any drop. When VM3 returns to the service at t =
400s, the overload situation is passed. The call admission 
rate, �̅�𝑙  and �̅�𝑙 for medium flavor reaches approximately 
100%, 31% (of 2 vCPUs) and 29% (of 4 GB memory). That 
is why the VMs flavor change from medium to small. 
Thereafter, all the VMs work with small flavor and can 
return to the service rate before the overload (Fig. 21). 
However, as already mentioned, in case “Without VLB-
CAC”, there is no way to reach the service rate before the 
overload even after passing the overload.  

8) Effect of duty cycle 𝜏 
In this subsection, we investigate the effect of VLB-

CAC’s duty cycle (𝜏) on the system performance. For this 
purpose, we evaluate the call admission rate and resource 
utilization of the VLB-CAC in different values of 𝜏 (𝜏 =
2, 4, 6, 8𝑠). As shown in Table IV, when 𝜏 is low (𝜏 = 2𝑠) 
the hold-on time for the new calls is low and the interval of 

VLB-CAC decision is short and consequently, 𝑅𝑘𝑙
𝑖𝑗

 and 𝐶𝑖𝑗 

are more accurate which causes a higher call admission rate. 
However, as shown in Table IV, the average CPU and 
memory consumption in case τ = 2s are more than those of 
the others cases.  

TABLE IV.  COMPARISON OF THE RESULTS AS THE 𝜏 IS VARIED WITH 

VLB-CAC (SCENARIO 1 OF WIDE TOPOLOGY) 
 f2 f4 

𝜏 (𝑠) 2 4 6 8 2 4 6 8 

Call admission rate (%) ~ 41 37 21 14 100 96 80 74 

Average CPU usage (%) ~ 22 20 17 13 38 35 32 27 

Average memory usage (%) ~ 19 17 15 13 31 28 24 20 

 
A: Number of serviced requests 

 
B: Average CPU consumption of VMs (�̅�𝑙) 

 
C: Average memory consumption of VMs (�̅�𝑙  (  

Fig. 21. Network performance over time in case of VM3 failure 

C.  Comparison with Other Algorithms 

 In this section, we assess the performance of the 
algorithm implemented on VLB-CAC (Section IV.A) 
against [22] and [4] (the configuration is similar to that of 
Section V.A). In [4], TLWL algorithm routes a new call 
request to the server with the least load using a load 
balancer. On the other hand, [22] employs a mixed-integer 
nonlinear optimization on three levels to allocate resources 
with respect to the cloud platform input requests (here, we 

consider medium level which is referred to as 𝑅𝐴𝑃𝑐
𝑇2). 

“Algorithm execution time”, “resource consumption for 
running the algorithm as the cost of the algorithm” and 
“throughput as the algorithm output” are considered for the 
assessment. As Table V shows, VLB-CAC is able to achieve 
a better throughput compared with the other two algorithms, 
which happens as a result of the linearity of the model. 
Moreover, linearity allows lower execution time and 
resource consumption. 

TABLE V.  VLB-CAC PERFORMANCE COMPARISON WITH OTHER ALGORITHMS 

The number of servers and incoming requests 𝑛 = 6 𝑎𝑛𝑑 ∑ ∑ ℂ𝑖𝑗𝑛
𝑗=1

𝑛
𝑖=1 = 3,300 𝑛 = 12  𝑎𝑛𝑑 ∑ ∑ ℂ𝑖𝑗𝑛

𝑗=1
𝑛
𝑖=1 = 6,600 𝑛 = 24 𝑎𝑛𝑑 ∑ ∑ ℂ𝑖𝑗𝑛

𝑗=1
𝑛
𝑖=1 = 13,200 

Algorithms VLB-CAC 
𝑅𝐴𝑃𝑐

𝑇2   
[22] 

TLWL  
[4] 

VLB-CAC 
𝑅𝐴𝑃𝑐

𝑇2   
[22] 

TLWL  
[4] 

VLB-CAC 
𝑅𝐴𝑃𝑐

𝑇2   
[22] 

TLWL  
[4] 

Algorithm Execution Time (s) ~  0.42 0.49 3.24 0.48 4.89 32.68 0.54 7.15 120.7  

CPU Consumption (%) ~ 3 8 14 4 15 19 5 26 38 

Memory Consumption (%) ~ 1 7 10 2 13 15 3 24 28 

Throughput (req/s) ~ 2,838 2,475 2,244 5,676 4,950 4,488 11,352 10,032 8,976 
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As the number of servers and requests increase, VLB-

CAC is able to demonstrate better scalability. By increasing 

servers, the number of variables in 𝑅𝐴𝑃𝑐
𝑇2 increase rapidly, 

which in turn demands more memory and processor. It 
should also be noted that LP can be solved with great 
efficiency in polynomial time by interior point methods, yet 
MINLPs are NP-hard (see [25, 26]). 

To compare our algorithm with TLWL, note that TLWL 
requires preserving the information from the received 
request for load estimation (and the whole signaling traffic 
of SIP network passes through the load balancer). Hence, the 
required resources for TLWL would burgeon by increasing 
the number of requests. As mentioned in [4], TLWL offers 
scalable solution for a maximum of 10 servers. 

VI. CONCLUSION AND FUTURE WORK 

In this paper, we proved that the problem of overload 

control in SIP network with 𝑛 > 2 servers and in limited 

resources is NP-hard. We introduced a Virtual Load-

Balanced Call Admission Controller (VLB-CAC) based on 

a heuristic mathematical model to determine optimal 

resource allocation in such a way that the number of 

requested local and outbound calls are maximized regarding 

the limited resources of the SIP servers. Specifically, we 

proposed a linear optimization model to maximize call 

admission rates along with the optimal allocation of CPU 

and memory resources of the SIP servers. The under-study 

SIP network was implemented in the VMs through the use 

of virtualization capacity in the SAVI testbed and VLB-

CAC was equipped with an autoscaling method to overcome 

the resource limitations. We developed the various 

autoscaling policies to deal with the SIP network overload. 

An assessment of the analytical and experimental results in 

various scenarios demonstrates the efficiency of the 

proposed method. As future work, we intend to make 

effective use of SDNs (Software Defined Networks) for 

controlling overload in SIP networks. We also plan to 

implement VLB-CAC using the OpenFlow protocol.  
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